GCE 2004 November Series

Mark Scheme

Mathematics and Statistics B MBM1

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from:

Publications Department, Aldon House, 39, Heald Grove, Rusholme, Manchester, M14 4NA Tel: 0161 953 1170

or

download from the AQA website: www.aqa.org.uk

Copyright © 2004 AQA and its licensors

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX. Dr Michael Cresswell Director General

www.theallpapers.com

Key to Mark Scheme

mark is for	method
mark is dependent on one or more M marks and is for	method
mark is dependent on M or m mark and is for	accuracy
mark is independent of M or m marks and is for	method and accuracy
mark is for	explanation
	follow through from previous
	incorrect result
	correct answer only
	correct solution only
	anything which falls within
	anything which rounds to
	any correct form
	answer given
	special case
	or equivalent
	significant figure(s)
	decimal place(s)
	2 or 1 (or 0) accuracy marks
	deduct <i>x</i> marks for each error
	possibly implied
	substantially correct approach
	mark is for mark is dependent on one or more M marks and is for mark is independent of M or m marks and is for mark is for

Abbreviations used in Marking

deducted x marks for mis-copy
deducted x marks for mis-read
ignored subsequent working
gave benefit of doubt
work replaced by candidate
formulae book

Application of Mark Scheme

Correct answer without working	mark as in scheme
Incorrect answer without working	zero marks unless specified otherwise

Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

www.theallpapers.com

Question	Solution	Marks	Total	Comments
Number				
and Part				
1(a)(i)	$16^2 = 0^2 + 2 \times a \times 400$	M1		Using constant acceleration equation to
	$a = \frac{256}{100} = 0.32 \mathrm{m s^{-2}}$	A 1	2	find a ag Correct a from correct working
	$u = \frac{1}{800} = 0.32 \text{ m/s}$	AI	2	ag concet a nom concet working
(ii)	16 = 0 + 0.32t	M1		Using constant acceleration equation to
	$t = \frac{16}{1000} = 50$ seconds	A 1	2	find <i>t</i>
	0.32	AI	Z	
(b)(1)	$30^2 = 16^2 + 2 \times 0.5s$	MI		Using constant acceleration equation to
	$s = 30^2 - 16^2 = 644 \mathrm{m}$	A1	2	Correct s
(ii)	$644 = \frac{1}{16} (16 + 20) t$			
	$644 = \frac{-(10+30)i}{2}$	M1		Using constant acceleration equation to
	$t = \frac{644}{288}$			find <i>t</i>
	$r = \frac{1}{23} = 203$	Al		Correct <i>t</i>
	Total time = $28 + 50 = 78$ s	A1√	3	Adding 50 to give total time
	Total		9	
2(a)	A P			
		D1	1	Compat diagnam
		BI	1	Correct diagram
	↓ mg			
	8			
(b)	$R = 4 \times 9.8 = 39.2 \text{ N}$	B1	1	Correct normal reaction
(c)	$T - 0.4 \times 39.2 = 4 \times 2$	M1		Three term equation of motion
	T = 22.7 NL(42.2 cf)	AI		Correct equation
	I = 23.7 IN (10.381)	A1	3	Correct T
(d)	$20 - 0.4 \times 39.2 = 4a$	M1		
	$a = 1.08 \mathrm{m s}^{-2}$	A1	2	
	Total		7	
3(a)	12g - T = 12a	M1		Equation of motion for one particle
		AI		Correct equation
	T - 8g = 8a	M1		Equation of motion for other particle
		Al		Correct equation
	8a + 8g = 12g - 12a			
	20a = 4g			
	4g			
	$a = \frac{10}{20} = 1.96 \text{ m s}^{-2}$	A1	5	ag Correct a from correct working
(b)	$T = 8 \times 1.96 + 8 \times 9.8$	M1		Substituting value for <i>a</i> into equation of
	= 94.1 N			motion to find T
	7 0.100	A1	2	Correct T
(c)	t' = 0 + 1.96t	M1		Using constant acceleration to find <i>t</i>
	$t = \frac{7}{1.06} = 3.57 \text{ s} (\text{to } 3 \text{ sf})$	A1	2	Correct t
	1.96	411		
	Total		У	

Intallematics and Statistics Dividentity 1 Midnin November 2004

www.theallpapers.com

MBM1 (cont)

Number and PartMIThree term conservation of momentum equation Correct v 4(a) $2 \times 5 = 40v$ M1Three term conservation of momentum equation Correct v (b) $2 \times 6 + 40 \times 0.25 = 42v$ M1Three term conservation of momentum equation Correct equation(b) $2 \times 6 + 40 \times 0.25 = 42v$ M1Three term conservation of momentum equation Correct equation $v = \frac{22}{42} = \frac{11}{21} = 0.524 \text{ m s}^{-1}$ (to 3sf)A13Correct v $v = \frac{22}{42} = \frac{11}{21} = 0.524 \text{ m s}^{-1}$ (to 3sf)A13Correct expression in the form correct v $v = \frac{22}{42} = \frac{11}{21} = 0.524 \text{ m s}^{-1}$ (to 3sf)A13Correct equation $v = \frac{22}{42} = \frac{11}{21} = 0.524 \text{ m s}^{-1}$ (to 3sf)B1Correct tension in left string $v = \frac{22}{42} = \frac{11}{21} = 0.524 \text{ m s}^{-1}$ (to 3sf)B1Correct equation $v = \frac{22}{42} = \frac{11}{21} = 0.524 \text{ m s}^{-1}$ (to 3sf)B1Correct tension in left string $v = \frac{22}{42} = \frac{11}{21} = 0.524 \text{ m s}^{-1}$ (to 3sf)B1Correct expression in right string $v = \frac{10}{2} = 3 \times 9.8 = 29.4 \text{ N}$ B12Correct tension in right string $v = \frac{10}{2} = 3 \times 9.8 = 29.4 \text{ N}$ A1Correct equation $v = \frac{10}{2} = 3 \times 9.8 = 29.4 \text{ sin } \theta$ A1Correct expression for sin θ $v = \frac{10}{2} = \frac{10}{29.4} = 0.9093$ A1Correct expression for sin θ $v = \frac{10}{2} = \frac{10}{29.4} = 0.9093$ A1S $v = \frac{10}{2} = 3 \times 2 \cos 43^\circ + 29.4 \cos \theta$ A1S $v = \frac{10}{2} = 3 \times 2 \cos 43^\circ + 29.4 \cos \theta$ <	
and PartImage: constraint of the second system	
4(a) $2 \times 5 = 40v$ M1Three term conservation of momentum equation Correct v $v = \frac{10}{40} = 0.25 \mathrm{m s^{-1}}$ A12Correct v (b) $2 \times 6 + 40 \times 0.25 = 42v$ M1Three term conservation of momentum equation Correct v Three term conservation of momentum equation Correct v $v = \frac{22}{42} = \frac{11}{21} = 0.524 \mathrm{m s^{-1}}$ (to 3sf)A13Correct v Total55(a) $T_1 = 4 \times 9.8 = 39.2 \mathrm{N}$ B1Correct tension in left string $T_2 = 3 \times 9.8 = 29.4 \mathrm{N}$ B12Correct tension in right string(b) $39.2 \sin 43^\circ = 29.4 \sin \theta$ M1Resolving horizontally $\sin \theta = \frac{39.2 \sin 43^\circ}{29.4} = 0.9093$ A1Correct expression for $\sin \theta$ $\theta = 65.4^\circ$ M1A15ag Correct θ from correct working(c) $9.8m = 39.2 \cos 43^\circ + 29.4 \cos \theta$ M1B15A15ag Correct θ from correct working $\theta = 65.4^\circ$ A15ag Correct θ from correct working $A1$ $A1$ $A1$ $A1$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ım
(b) $2 \times 6 + 40 \times 0.25 = 42v$ M1Three term conservation of momentum equation Correct equation $v = \frac{22}{42} = \frac{11}{21} = 0.524 \mathrm{m s^{-1}}$ (to 3sf)A13Correct equation $v = \frac{22}{42} = \frac{11}{21} = 0.524 \mathrm{m s^{-1}}$ (to 3sf)A13Correct vTotal55(a) $T_1 = 4 \times 9.8 = 39.2 \mathrm{N}$ B1Correct tension in left string $T_2 = 3 \times 9.8 = 29.4 \mathrm{N}$ B12Correct tension in right string(b) $39.2 \sin 43^\circ = 29.4 \sin \theta$ M1Resolving horizontally $\sin \theta = \frac{39.2 \sin 43^\circ}{29.4} = 0.9093$ A1Correct equation $\theta = 65.4^\circ$ M1Finding θ (c) $9.8m = 39.2 \cos 43^\circ + 29.4 \cos \theta$ M1A15ag Correct θ from correct workingResolving verticallyCorrect equation	
$v = \frac{22}{42} = \frac{11}{21} = 0.524 \mathrm{m s^{-1}}$ (to 3sf)A1A1Correct equation Correct v Total55(a) $T_1 = 4 \times 9.8 = 39.2 \mathrm{N}$ B1Correct tension in left string $T_2 = 3 \times 9.8 = 29.4 \mathrm{N}$ B12Correct tension in right string(b) $39.2 \sin 43^\circ = 29.4 \sin \theta$ M1Resolving horizontally $\sin \theta = \frac{39.2 \sin 43^\circ}{29.4} = 0.9093$ A1Correct equation $\theta = 65.4^\circ$ M1Finding θ (c) $9.8m = 39.2 \cos 43^\circ + 29.4 \cos \theta$ M1Summer and the second of th	ım
$v = \frac{22}{42} = \frac{11}{21} = 0.524 \text{ m s}^{-1}$ (to 3sf)A13Correct v Total55(a) $T_1 = 4 \times 9.8 = 39.2 \text{ N}$ B1Correct tension in left string $T_2 = 3 \times 9.8 = 29.4 \text{ N}$ B12Correct tension in right string(b) $39.2 \sin 43^\circ = 29.4 \sin \theta$ M1Resolving horizontally $\sin \theta = \frac{39.2 \sin 43^\circ}{29.4} = 0.9093$ A1Correct equation $\theta = 65.4^\circ$ M1Finding θ (c) $9.8m = 39.2 \cos 43^\circ + 29.4 \cos \theta$ M1Subscription	
Total55(a) $T_1 = 4 \times 9.8 = 39.2 \text{ N}$ B1Correct tension in left string $T_2 = 3 \times 9.8 = 29.4 \text{ N}$ B12Correct tension in right string(b) $39.2 \sin 43^\circ = 29.4 \sin \theta$ M1Resolving horizontally $\sin \theta = \frac{39.2 \sin 43^\circ}{29.4} = 0.9093$ A1Correct equation $\theta = 65.4^\circ$ M1Finding θ (c) $9.8m = 39.2 \cos 43^\circ + 29.4 \cos \theta$ M1A1Correct equationA1Correct equationCorrect equationCorrect expression for sin θ B1Correct equationCorrect equationA1Correct equationCorrect equationCorrect equationA1Correct equationCorrect equationCorrect equationA1Correct equationCorrect equationA1Correct equationCorrect equati	
5(a) $T_1 = 4 \times 9.8 = 39.2 \text{ N}$ B1Correct tension in left string $T_2 = 3 \times 9.8 = 29.4 \text{ N}$ B12Correct tension in right string(b) $39.2 \sin 43^\circ = 29.4 \sin \theta$ M1Resolving horizontally $\sin \theta = \frac{39.2 \sin 43^\circ}{29.4} = 0.9093$ A1Correct equation $\theta = 65.4^\circ$ M1A1(c) $9.8m = 39.2 \cos 43^\circ + 29.4 \cos \theta$ M1A15ag Correct θ from correct workingResolving verticallyCorrect equationCorrect equationCorrect equationCorrect equationCorrect expression for sin θ Finding θ A1Correct equationCorrect equationCorrect equationCorrect equationCorrect equationCorrect expression for sin θ A15ag Correct θ from correct workingCorrect equationA1Correct equationCorrect equation	
T $T_2 = 3 \times 9.8 = 29.4 \text{ N}$ B1 M12Correct tension in right string Resolving horizontally Correct equation Correct expression for sin θ (b) $39.2 \sin 43^\circ = 29.4 \sin \theta$ M1 M1A1 A1 A1Correct tension in right string Resolving horizontally Correct equation Finding θ (c) $9.8m = 39.2 \cos 43^\circ + 29.4 \cos \theta$ M1 A15ag Correct θ from correct working Resolving vertically Correct equation	
(b) $39.2 \sin 43^\circ = 29.4 \sin \theta$ M1Resolving horizontally $\sin \theta = \frac{39.2 \sin 43^\circ}{29.4} = 0.9093$ M1A1Correct equation $\theta = 65.4^\circ$ M1A1Correct expression for $\sin \theta$ (c) $9.8m = 39.2 \cos 43^\circ + 29.4 \cos \theta$ M1A1A1A1Correct expression for $\sin \theta$ A1A1Correct θ from correct workingCorrect equationA1Correct θ from correct workingCorrect equationCorrect equationCorrect θ from correct workingCorrect θ from correct workingCorrect equationCorrect equationCorrect equationCorrect θ from correct workingCorrect equationCorrect equationCorrect equationCorrect θ from correct workingCorrect equationCorrect equationCorrect equationCorrect equation	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c c} \sin\theta = \frac{59.2 \sin 43}{29.4} = 0.9093 \\ \theta = 65.4^{\circ} \\ (c) 9.8m = 39.2 \cos 43^{\circ} + 29.4 \cos \theta \end{array} \begin{array}{c c} A1 \\ M1 \\ A1 \\ A1 \end{array} \begin{array}{c c} A1 \\ A1 \\ A1 \\ A1 \end{array} \begin{array}{c c} Correct expression for sin \theta \\ Finding \theta \\ ag Correct \theta from correct working \\ Resolving vertically \\ Correct equation \end{array} $	
$ \begin{array}{c c} \theta = 65.4^{\circ} \\ (c) \\ 9.8m = 39.2 \cos 43^{\circ} + 29.4 \cos \theta \\ (c) \\ \end{array} \begin{array}{c c} M1 \\ A1 \\ A1 \\ A1 \\ A1 \\ A1 \\ \end{array} \begin{array}{c c} M1 \\ Bi \\ Bi \\ Bi \\ Correct \theta from correct working \\ Resolving vertically \\ Correct equation \\ \end{array} $	
(c) $9.8m = 39.2 \cos 43^\circ + 29.4 \cos \theta$ A15ag Correct θ from correct working Resolving vertically Correct equation	
(c) $9.8m = 39.2 \cos 43^\circ + 29.4 \cos \theta$ M1 Resolving vertically Correct equation	
A1 Correct equation	
$39.2\cos 43^\circ + 29.4\cos \theta$ $4171m$ M1 Finding m	
$m = \frac{9.8}{9.8} = 4.17 \text{ kg} \qquad \text{A1} \qquad 4 \qquad \text{Correct } m$	
Total 11	
$6(a) \land R_B$	
BI I Correct force diagram	
\mathbf{A}_{R_A} \mathbf{A}_{mg}	
(b) $0.8R_A = 0.5 \times 40 \times 9.8$ M1 Moment equation to find R_A	
A1 Correct equation	
$R_{A} = \frac{0.5 \times 40 \times 9.8}{100} = 245 \text{ N}$ A1 3 ag Correct reaction from correct working	king
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0
(c) $\kappa_B = 245 + 40 \times 9.8 = 63 / N$ MI Al 2 Use of equilibrium to form an equation Correct reaction	on
(d) $0.8R_A = 0.5 \times 40 \times 9.8 + 3 \times 5 \times 9.8$ M1 Four term moment equation	
A1 Correct equation	
$P = 0.5 \times 40 \times 9.8 + 3 \times 5 \times 9.8$ M1 Einding reaction	
$\kappa_A = \frac{0.8}{0.8}$	
= 429 N (to 3sf) A1 Correct reaction	
$R_B = 429 + 40 \times 9.8 + 5 \times 9.8$ M1	
= 870 N (to sf)	
Total 12	

Question	Solution	Marks	Total	Comments
Number				
and Part $7(a)$	10i + 12i - 25i + 45i + 80	M1		Constant appalemation equation to find a
/(a)	191 + 15j = 551 + 45j + 6a	A 1		Correct equation
	$a = \frac{19-35}{9}i + \frac{13-45}{9}j = -2i - 4j$	Al	3	ag Correct a from correct working
	8 8 1 0		-	
(b)	$\mathbf{r} = (35\mathbf{i} + 45\mathbf{j})t + \frac{1}{2}(-2\mathbf{i} - 4\mathbf{j})t^2$	M1		Use of constant acceleration equation
	2	Al	2	Correct i component
(c)	(25) (25) (45) $(2)^{2}$	AI D1	3	
	$\mathbf{r} = (35t - t^{-})\mathbf{i} + (45t - 2t^{-})\mathbf{j}$	BI		Splitting into components correctly
	$35t - t^2 = 300$	M1		Forming equation for one component
	$t^2 - 35t + 300 = 0$	M1		Solving quadratic
	t = 15 or t = 20	A1		Two correct solutions
	$4t - 2t^2 = 225$	D.I.		
	$2t^2 - 45t + 225 = 0$	BI		Forming correct second quadratic
	t = 7.5 or t = 15			
	t = 7.5 or t = 15	Ml	-	Solving quadratic for two solutions
	t = 15 seconds	AI	12	
8(a)(i)		M1	13	Earming aquation for time of flight
o(a)(1)	$20\sin 30^{\circ}t - 4.9t^2 = 0$	A1		Correct equation
	$t = 0$ or $t = \frac{20 \sin 30^{\circ}}{20 \sin 30^{\circ}} = 2.04$ (to 3 sf)	M1		Solving quadratic equation
	4.9	A1	4	ag Correct solution from correct working
(ii)	$R = 20\cos 30^\circ \times 2.04 = 35.3 \mathrm{m}$	M1	•	Calculation of range
(b)		AI M1	2	Correct range Equation to find t at height of 2
(0)	$20\sin 30^{\circ}t - 4.9t^2 = 2$	A1		Correct equation
	$4.9t^2 - 10t + 2 = 0$			
	t = 0.2248 or $t = 1.82$	A1		Correct times
	$v_y = 20 \sin 30^\circ - 9.8 \times 0.2248 = 7.797$	M1		Calculating vertical component
	$v_{\rm r} = 20\cos 30^\circ = 17.32$	Al B1		Correct vertical component
		M1		Finding speed from components
	$v = \sqrt{v_x^2 + v_y^2} = 19.0 \mathrm{m s^{-1}} \ (\text{to 3 sf})$	Al	8	Correct speed
	Total		14	*
	TOTAL		80	