GCE 2004 June Series

Mark Scheme

Mathematics and Statistics B *MBM1*

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from:
Publications Department, Aldon House, 39, Heald Grove, Rusholme, Manchester, M14 4NA Tel: 0161 953 1170
or
download from the AQA website: www.aqa.org.uk
Copyright © 2004 AQA and its licensors
COPYRIGHT AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered

within the centre.

Set and published by the Assessment and Qualifications Alliance.

charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 $6\mathrm{EX}$.

Dr Michael Cresswell Director General

Key to Mark Scheme

3.4	1 ' C	.1 1
M	mark is for	method
m	mark is dependent on one or more M marks and is for	method
A	mark is dependent on M or m marks and is for	accuracy
В	mark is independent of M or m marks and is for	accuracy
E	mark is for	explanation
or ft or F		follow through from previous
		incorrect result
cao		correct answer only
cso		correct solution only
awfw		anything which falls within
awrt		anything which rounds to
acf		any correct form
ag		answer given
sc		special case
oe		or equivalent
sf		significant figure(s)
dp		decimal place(s)
A2,1		2 or 1 (or 0) accuracy marks
–x ee		deduct x marks for each error
pi		possibly implied
sca		substantially correct approach

Abbreviations used in Marking

MC-x	deducted x marks for mis-copy
MR - x	deducted x marks for mis-read
isw	ignored subsequent working
bod	given benefit of doubt
wr	work replaced by candidate
fb	formulae book

Application of Mark Scheme

No	met	hod	sh	own:
----	-----	-----	----	------

Correct answer without working	mark as in scheme
Incorrect answer without working	zero marks unless specified otherwise
More than one method / choice of solution:	
2 or more complete attempts, neither/none crossed out	mark both/all fully and award the mean mark rounded down
1 complete and 1 partial attempt, neither crossed out	award credit for the complete solution only
Crossed out work	do not mark unless it has not been replaced
Alternative solution using a correct or partially correct method	award method and accuracy marks as appropriate

Mathematics and Statistics B Mechanics 1 MBM1 June 2004

Question Number	Solution	Marks	Total marks	Comments
and Part				
1(a)	24.5 = 9.8t	M1		Use of $v = u + at$ with $u = 0$
	$t = \frac{24.5}{9.8} = 2.5$ seconds	A1	2	Correct time
(b)	$24.5^2 = 0^2 + 2 \times 9.8s$	M1		Use of constant acceleration equation to find s, with $u = 0$ or $v = 24.5$
	24.52	A1		Correct equation
	$s = \frac{24.5^2}{2 \times 9.8} = 30.625 \mathrm{m}$	A1	3	ag Correct distance from correct working
(c)	$30.625 - 5 = 4.9t^2$	M1		Use of $s = ut + \frac{1}{2}at^2$ with $u = 0$
		A1		Correct equation
	$t = \sqrt{\frac{25.625}{4.9}} = 2.29$	m1		Solving for <i>t</i> having subtracted 5
	,	A1	4	Correct t
	Total		9	
2(a)	$R \longrightarrow 8$ mg	B1	1	Correct force diagram with labels
(b)	$R\cos 30^\circ = 8$	M1 A1		Resolving horizontally to get two terms Correct equation
	$R = \frac{8}{\cos 30^\circ} = 9.24$	A1	3	ag Correct answer from correct working (Other methods: M1 A1 if correct)
(c)	$R\cos 60 = 9.8m$	M1		Resolving horizontally to get two terms, with 8 not included
	8 cos 60°	A1		Correct equation
	$m = \frac{8\cos 60^{\circ}}{9.8\cos 30^{\circ}} = 0.47$	A1	3	Correct <i>m</i> to 2 sf (Resolving perpendicular to the plane: M1 A1 for equation and A1 for final answer)
	Total		7	2

MBM1 (cont)

Question Number and Part	Solution	Marks	Total marks	Comments
3(a)	$R = 20 \times 9.8 = 196$	B1	1	cao
(b)	$F \le 0.3 \times 196 = 58.8$	M1		Using 0.3×196
	If $P = 80$, $F = 58.8$	A1		58.8 as answer
	If $P = 40$, $F = 40$	A1	3	40 as answer
(c)	$P - 58.8 = 20 \times 0.8$	M1		Three term equation of motion including 58.8
		A1		Correct equation
	P = 74.8	A1	3	Correct P
(d)	$a = \frac{-58.8}{20} = -2.94$	M1 A1		Use of $F = ma$ with ± 58.8 Correct acceleration with a negative sign
	$0^2 = 6^2 + 2 \times (-2.94)s$	m1 A1		Use of $v^2 = u^2 + 2as$ with $v = 0$
	$s = \frac{36}{5.88} = 6.12$	A1	5	Correct distance
	Total		12	
4(a)	$2 \times 4 = 2 \times 1 + 4v$	M1		Three term equation for conservation of momentum, with $u_B = 0$
		A1		Correct equation
	$v = \frac{8-2}{4} = 1.5$	A1	3	Correct velocity (use of mg deduct 1 mark)
(b)	$4 \times 1.5 = 4v + m \times 2$	M1		Three term equation for conservation of momentum, with $u_C = 0$
		A1√		Correct equation
	$v = \frac{6 - 2m}{4}$	A1√	3	Correct velocity
(c)	$1 > \frac{6-2m}{4}$	M1		Equation or inequality with <i>v</i> from previous answer and 1
	4	A1√		Correct inequality
	4 > 6 - 2m	m1		Solving for <i>m</i>
	2m > 2			
	m > 1	A1	4	ag Correct result from correct working
	Total		10	

MBM1 (cont)

Question	Solution	Marks	Total	Comments
Number and Part			marks	
5(a)	$0.5 = \frac{1}{2} \times a \times 4$	M1		Use of $s = ut + \frac{1}{2}at^2$ with $u = 0$
	a = 0.25	A1	2	-
	a = 0.23	Al	2	Correct acceleration
4.	6 0 0 T 6 0 0 5	3.61		Three term equation of motion for
(b)	$6 \times 9.8 - T = 6 \times 0.25$	M1		particle, with correct use of g
		A1√		Correct equation
	T = 57.3	A1√	3	ag Correct T from correct working
(c)	$57.3 - F = 10 \times 0.25$	M1		Three term equation of motion for the block
		A1√		Correct equation
	F = 54.8	A1√		Correct F
	$R = 10 \times 9.8 = 98$	B1		R = 98 seen in working
	$54.8 = 98\mu$	m1		Use of $F = \mu R$
	$\mu = \frac{54.8}{98} = 0.559$	A1√	6	correct μ
	Total		11	
6(a)	$8\overline{x} = 1 \times 6 + 2.4 \times 2$	M1		Three term moment equation
		A1		Correct equation
	$\overline{x} = \frac{10.8}{8} = 1.35$ $\tan \alpha = \frac{0.4}{1.05}$	A1	3	ag Correct value form correct working
(b)	$\tan \alpha = \frac{0.4}{1.05}$	M1		Use of tan or sin/cos plus finding hypotenuse
	1.03	A1		Use of 0.4
		A1		Correct trig expression
	$\alpha = 20.9^{\circ}$	A1	4	Correct angle
	Total		7	

MBM1 (cont)

and Part	Question Number	Solution	Marks	Total marks	Comments
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				marks	
(ii) $\mathbf{v} = 20(2\mathbf{i} - 3\mathbf{j}) = 40\mathbf{i} - 60\mathbf{j}$ M1 (iii) $\mathbf{r} = \frac{1}{2}(2\mathbf{i} - 3\mathbf{j}) \times 20^2$ M1 (iii) $\mathbf{r} = \frac{1}{2}(2\mathbf{i} - 3\mathbf{j}) \times 20^2$ M1 (b) $\mathbf{r} = \frac{1}{2}(2\mathbf{i} - 3\mathbf{j}) \times 20^2$ M1 (iii) $\mathbf{r} = \frac{1}{2}(2\mathbf{i} - 3\mathbf{j}) \times 20^2$ M1 (b) $\mathbf{r} = 400\mathbf{i} - 600\mathbf{j}$ A1 (c) $\mathbf{r} = 400\mathbf{i} - 600\mathbf{j}$ A1 (d) $\mathbf{r} = 400\mathbf{i} - 600\mathbf{j} + 25(40\mathbf{i} - 60\mathbf{j})$ M1 (e) $\mathbf{r} = 400\mathbf{i} - 600\mathbf{j} + 25(40\mathbf{i} - 60\mathbf{j})$ M1 (f) $\mathbf{r} = 400\mathbf{i} - 2100\mathbf{j}$ M1 (g) $\mathbf{r} = 400\mathbf{i} - 2100\mathbf{j}$ M1 (h) $\mathbf{r} = 400\mathbf{i} - 2100\mathbf{j}$ M1 (o) $\mathbf{r} = 400\mathbf{i} - 200\mathbf{i}$ M1	7(a)(i)	1	M1		
(iii) $\mathbf{r} = \frac{1}{2}(2\mathbf{i} - 3\mathbf{j}) \times 20^2$ \mathbf{m}	, (13)(13)	$\mathbf{a} = \frac{1}{4}(8\mathbf{i} - 12\mathbf{j}) = 2\mathbf{i} - 3\mathbf{j}$	A1	2	
(iii) $\mathbf{r} = \frac{1}{2}(2\mathbf{i} - 3\mathbf{j}) \times 20^2$ M1 $\mathbf{r} = \frac{1}{2}(2\mathbf{i} - 3\mathbf{j}) \times 20^2$ M1 A1 $\mathbf{r} = \frac{1}{2}(2\mathbf{i} - 3\mathbf{j}) \times 20^2$ M1 A1 $\mathbf{r} = \frac{1}{2}(2\mathbf{i} - 3\mathbf{j}) \times 20^2$ M1 A1 $\mathbf{r} = 400\mathbf{i} - 600\mathbf{j}$ $\mathbf{r} = 400\mathbf{i} - 600\mathbf{j} + 25(40\mathbf{i} - 60\mathbf{j})$ $\mathbf{r} = 400\mathbf{i} - 600\mathbf{j} + 25(40\mathbf{i} - 60\mathbf{j})$ $\mathbf{r} = 1400\mathbf{i} - 2100\mathbf{j}$ $\mathbf{r} = \sqrt{1400^2 + 2100^2} = 2520 \mathbf{m} (\text{to } 3 \text{sf})$ M1 $\mathbf{r} = \sqrt{1400^2 + 2100^2} = 2520 \mathbf{m} (\text{to } 3 \text{sf})$ M1 A1 $\mathbf{r} = \sqrt{1400^2 + 2100^2} = 2520 \mathbf{m} (\text{to } 3 \text{sf})$ M1 A1 A1 A1 A1 A1 A1 A1 A1 A1	(ii)	$\mathbf{v} = 20(2\mathbf{i} - 3\mathbf{j}) = 40\mathbf{i} - 60\mathbf{j}$	M1		Use of $\mathbf{v} = \mathbf{u} + \mathbf{a}t$ with $\mathbf{u} = 0\mathbf{i} + 0\mathbf{j}$
Al Correct expression			A1	2	Correct v
	(iii)	$\mathbf{r} = \frac{1}{2} (2\mathbf{i} - 3\mathbf{j}) \times 20^2$	M1		_
(b) $\mathbf{r} = 400\mathbf{i} - 600\mathbf{j} + 25(40\mathbf{i} - 60\mathbf{j})$ $A1 \checkmark$ $A1 $			A1		Correct expression
		$=400\mathbf{i} - 600\mathbf{j}$	A1	3	Correct r in simplified form
	(b)	$\mathbf{r} = 400\mathbf{i} - 600\mathbf{j} + 25(40\mathbf{i} - 60\mathbf{j})$	M1		Use of $\mathbf{r} + 25\mathbf{v}$
$r = \sqrt{1400^2 + 2100^2} = 2520 \mathrm{m} (\text{to}3\text{sf}) \qquad \begin{array}{c} \mathrm{m1} \\ \mathrm{A1} \checkmark \\ \end{array} \qquad \begin{array}{c} \mathrm{Finding}\mathrm{magnitude} \\ \mathrm{Correct}\mathrm{distance}r\mathrm{and}25\nu \\ \mathrm{A1}\mathrm{for}\mathrm{each}\mathrm{distance}r\mathrm{and}25\nu \\ \mathrm{A1}\mathrm{for}\mathrm{each}\mathrm{distance}r\mathrm{and}25\nu \\ \mathrm{A1}\mathrm{for}\mathrm{each}\mathrm{distance}r\mathrm{and}25\nu \\ \mathrm{A1}\mathrm{for}\mathrm{each}\mathrm{distance}r\mathrm{and}25\nu \\ \mathrm{A1}\mathrm{correct}\mathrm{final}\mathrm{answer} \\ \end{array}$					_
Alternative: Straight line method M1 two distances r and $25v$ A1 for each distance m1 adding A1 correct final answer Total 8(a) $5 = 32\sin 60^{\circ}t - 4.9t^{2}$ M1 A1		$=1400\mathbf{i} - 2100\mathbf{j}$	A1√		Correct position vector
		$r = \sqrt{1400^2 + 2100^2} = 2520 \mathrm{m} (\text{to 3 sf})$		5	
8(a) $5 = 32\sin 60^{\circ}t - 4.9t^2$ M1 A1					M1 two distances <i>r</i> and 25 <i>v</i> A1 for each distance m1 adding
A1 A1 A1 LHS correct		Total		12	
$t = 0.1866 \text{ or } 5.4691$ 5.47 seconds $(b) 32 \cos 60^{\circ} \times 5.469 = 87.5 \text{ m}$ $(c) v_{H} = 32 \cos 60^{\circ} - 9.8 \times 5.469 = -25.88$ $v_{V} = \sqrt{16^{2} + 25.88^{2}} = 30.4 \text{ ms}^{-1}$ $10 $	8(a)	$5 = 32\sin 60^{\circ} t - 4.9t^2$	A1		LHS correct
5.47 seconds A1 Selecting larger answer from two solutions or obtaining one answer with a reason (b) $32\cos 60^{\circ} \times 5.469 = 87.5 \text{ m}$ M1 A1 Correct range (c) $v_H = 32\cos 60^{\circ}$ $v_V = 32\sin 60^{\circ} - 9.8 \times 5.469 = -25.88$ M1 A1 Finding vertical component of velocity correct vertical component $v_V = \sqrt{16^2 + 25.88^2} = 30.4 \text{ ms}^{-1}$ M1 A1 Finding magnitude Correct speed (Note Max Height = 39.2 m from $t = 2.83$) Total			111		Talls contect
(c) $v_H = 32\cos 60^\circ$ $v_V = 32\sin 60^\circ - 9.8 \times 5.469 = -25.88$ $v_V = \sqrt{16^2 + 25.88^2} = 30.4 \mathrm{ms}^{-1}$ Horiz. component of velocity seen or used Correct vertical component of velocity Correct vertical component Finding magnitude A1 5 Correct speed (Note Max Height = 39.2 m from $t = 2.83$)				5	Selecting larger answer from two solutions or obtaining one answer with a
$v_{V} = 32\sin 60^{\circ} - 9.8 \times 5.469 = -25.88$ $v = \sqrt{16^{2} + 25.88^{2}} = 30.4 \text{ ms}^{-1}$ $M1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ A	(b)	$32\cos 60^{\circ} \times 5.469 = 87.5 \text{ m}$		2	
$v = \sqrt{16^2 + 25.88^2} = 30.4 \text{ ms}^{-1}$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$	(c)	$v_H = 32\cos 60^\circ$	B1		Horiz. component of velocity seen or used
A1 5 Correct speed (Note Max Height = 39.2 m from $t = 2.83$) Total 12			A1		Correct vertical component
Total 12		$v = \sqrt{16^2 + 25.88^2} = 30.4 \text{ms}^{-1}$		5	Correct speed (Note Max Height = 39.2 m from
		Total		12	[t = 2.03]
TOTAL 80		TOTAL			