GCE 2004 June Series

ASSESSMENT and
OUALIFICATIONS
ALLIANCE

Mark Scheme

Mathematics and Statistics B MBM1

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from:
Publications Department, Aldon House, 39, Heald Grove, Rusholme, Manchester, M14 4NA Tel: 01619531170
or
download from the AQA website: www.aqa.org.uk
Copyright © 2004 AQA and its licensors

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX.

Key to Mark Scheme

M	mark is for	method
m	mark is dependent on one or more M marks and is for	method
A	mark is dependent on M or m marks and is for	accuracy
B	mark is independent of M or m marks and is for	accuracy
E	mark is for	explanation
\checkmark or ft or F		follow through from previous incorrect result
cao		correct answer only
cso		correct solution only
awfw		anything which falls within
awrt		anything which rounds to
acf		any correct form
ag		answer given
sc		special case
oe		or equivalent
sf		significant figure(s)
dp		decimal place(s)
A2,1		2 or 1 (or 0) accuracy marks
$-x$ ee		deduct x marks for each error
pi		possibly implied
sca		substantially correct approach

Abbreviations used in Marking

MC $-\boldsymbol{x}$
MR $-\boldsymbol{x}$
isw
bod
wr
fb

deducted x marks for mis-copy deducted x marks for mis-read ignored subsequent working given benefit of doubt work replaced by candidate formulae book

Application of Mark Scheme

No method shown:

Correct answer without working
Incorrect answer without working
More than one method / choice of solution:
2 or more complete attempts, neither/none crossed out
1 complete and 1 partial attempt, neither crossed out
Crossed out work
Alternative solution using a correct or partially correct method
mark as in scheme zero marks unless specified otherwise
mark both/all fully and award the mean mark rounded down
award credit for the complete solution only
do not mark unless it has not been replaced
award method and accuracy marks as appropriate

Mathematics and Statistics B Mechanics 1 MBM1 June 2004

Question Number and Part	Solution	Marks	Total marks	Comments
1(a)	$24.5=9.8 t$	M1		Use of $v=u+a t$ with $u=0$
	$t=\frac{24.5}{9.8}=2.5 \text { seconds }$	A1	2	Correct time
(b)	$24.5^{2}=0^{2}+2 \times 9.8 \mathrm{~s}$	M1		Use of constant acceleration equation to find s, with $u=0$ or $v=24.5$
		A1		Correct equation
	$s=\frac{2+. J}{2 \times 9.8}=30.625 \mathrm{~m}$	A1	3	ag Correct distance from correct working
(c)	$30.625-5=4.9 t^{2}$	M1		Use of $s=u t+\frac{1}{2} a t^{2}$ with $u=0$
		A1		Correct equation
	$t=\sqrt{\frac{25.625}{4.9}}=2.29$	$\begin{aligned} & \text { m1 } \\ & \text { A1 } \end{aligned}$	4	Solving for t having subtracted 5 Correct t
	Total		9	
2(a)	R_{∇}			
	$\rightarrow 8$	B1	1	Correct force diagram with labels
(b)	$R \cos 30^{\circ}=8$	M1		Resolving horizontally to get two terms
		A1		Correct equation
	$R=\frac{8}{\cos 30^{\circ}}=9.24$	A1	3	ag Correct answer from correct working (Other methods: M1 A1 if correct)
(c)	$R \cos 60=9.8 m$	M1		Resolving horizontally to get two terms, with 8 not included
	$8 \cos 60^{\circ}$	A1		Correct equation
	$m=\frac{8 \cos 0}{9.8 \cos 30^{\circ}}=0.47$		3	(Resolving perpendicular to the plane:
				M1 A1 for equation and A1 for final answer)
	Total		7	

MBM1 (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Question Number and Part \& Solution \& Marks \& Total marks \& Comments

\hline 3(a)
(b)
(c)

(d) \& \[
$$
\begin{aligned}
& R=20 \times 9.8=196 \\
& F \leq 0.3 \times 196=58.8 \\
& \text { If } P=80, F=58.8 \\
& \text { If } P=40, F=40 \\
& P-58.8=20 \times 0.8 \\
& P=74.8 \\
& a=\frac{-58.8}{20}=-2.94 \\
& 0^{2}=6^{2}+2 \times(-2.94) s \\
& s=\frac{36}{5.88}=6.12
\end{aligned}
$$

\] \& | B1 |
| :--- |
| M1 |
| A1 |
| A1 |
| M1 |
| A1 |
| A1 |
| M1 |
| A1 |
| m1 |
| A1 |
| A1 | \& 3

3 \& | cao |
| :--- |
| Using 0.3×196 |
| 58.8 as answer |
| 40 as answer |
| Three term equation of motion including 58.8 |
| Correct equation |
| Correct P |
| Use of $F=m a$ with ± 58.8 |
| Correct acceleration with a negative sign |
| Use of $v^{2}=u^{2}+2 a s$ with $v=0$ |
| Correct distance |

\hline \& Total \& \& 12 \&

\hline \multirow[t]{2}{*}{4(a)} \& $2 \times 4=2 \times 1+4 v$ \& \[
$$
\begin{aligned}
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$

\] \& \& | Three term equation for conservation of momentum, with $u_{B}=0$ |
| :--- |
| Correct equation |

\hline \& $$
v=\frac{8-2}{4}=1.5
$$ \& A1 \& 3 \& Correct velocity (use of $m g$ deduct 1 mark)

\hline \multirow[t]{2}{*}{(b)} \& \[
4 \times 1.5=4 v+m \times 2

\] \& | M1 |
| :--- |
| $\mathrm{A} 1 \checkmark$ | \& \& | Three term equation for conservation of momentum, with $u_{C}=0$ |
| :--- |
| Correct equation |

\hline \& $$
v=\frac{6-2 m}{4}
$$ \& A1 \checkmark \& 3 \& Correct velocity

\hline \multirow[t]{4}{*}{(c)} \& \[
1>\frac{6-2 m}{4}

\] \& | M1 |
| :--- |
| A1 $\sqrt{ }$ | \& \& Equation or inequality with v from previous answer and 1 Correct inequality

\hline \& $$
4>6-2 m
$$ \& m1 \& \& Solving for m

\hline \& $2 m>2$ \& \& \&

\hline \& $m>1$ \& A1 \& 4 \& ag Correct result from correct working

\hline \& Total \& \& 10 \&

\hline
\end{tabular}

MBM1 (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Question Number and Part \& Solution \& Marks \& Total marks \& Comments \\
\hline \begin{tabular}{l}
5(a) \\
(b) \\
(c)
\end{tabular} \& \[
\begin{aligned}
\& 0.5=\frac{1}{2} \times a \times 4 \\
\& a=0.25 \\
\& 6 \times 9.8-T=6 \times 0.25 \\
\& T=57.3 \\
\& 57.3-F=10 \times 0.25 \\
\& F=54.8 \\
\& R=10 \times 9.8=98 \\
\& 54.8=98 \mu \\
\& \mu=\frac{54.8}{98}=0.559
\end{aligned}
\] \& M1
A1
M1
A1 \(\checkmark\)
A1 \(\checkmark\)
M1
A1 \(\checkmark\)
A1 \(\checkmark\)
B1
m1
A1 \(\checkmark\) \& \& \begin{tabular}{l}
Use of \(s=u t+\frac{1}{2} a t^{2}\) with \(u=0\) \\
Correct acceleration \\
Three term equation of motion for particle, with correct use of \(g\) Correct equation ag Correct \(T\) from correct working \\
Three term equation of motion for the block \\
Correct equation \\
Correct \(F\) \\
\(R=98\) seen in working \\
Use of \(F=\mu R\) \\
correct \(\mu\)
\end{tabular} \\
\hline \& Total \& \& 11 \& \\
\hline \begin{tabular}{l}
\[
6(a)
\] \\
(b)
\end{tabular} \& \[
\begin{aligned}
\& 8 \bar{x}=1 \times 6+2.4 \times 2 \\
\& \bar{x}=\frac{10.8}{8}=1.35 \\
\& \tan \alpha=\frac{0.4}{1.05} \\
\& \alpha=20.9^{\circ}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { A1 } \\
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { A1 } \\
\& \text { A1 }
\end{aligned}
\] \& 3

4 \& | Three term moment equation |
| :--- |
| Correct equation |
| ag Correct value form correct working |
| Use of tan or $\sin /$ cos plus finding hypotenuse |
| Use of 0.4 |
| Correct trig expression |
| Correct angle |

\hline \& Total \& \& 7 \&

\hline
\end{tabular}

MBM1 (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Question Number and Part \& Solution \& Marks \& Total marks \& Comments \\
\hline \begin{tabular}{l}
\[
7(\mathrm{a})(\mathrm{i})
\] \\
(ii) \\
(iii) \\
(b)
\end{tabular} \& \[
\begin{aligned}
\mathbf{a} \& =\frac{1}{4}(8 \mathbf{i}-12 \mathbf{j})=2 \mathbf{i}-3 \mathbf{j} \\
\mathbf{v} \& =20(2 \mathbf{i}-3 \mathbf{j})=40 \mathbf{i}-60 \mathbf{j} \\
\mathbf{r} \& =\frac{1}{2}(2 \mathbf{i}-3 \mathbf{j}) \times 20^{2} \\
\& =400 \mathbf{i}-600 \mathbf{j} \\
\mathbf{r} \& =400 \mathbf{i}-600 \mathbf{j}+25(40 \mathbf{i}-60 \mathbf{j}) \\
\& =1400 \mathbf{i}-2100 \mathbf{j} \\
r \& \left.=\sqrt{1400^{2}+2100^{2}}=2520 \mathrm{~m} \text { (to } 3 \mathrm{sf}\right)
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1 \\
M1 \\
A1 \\
A1 \\
M1 \\
A1 \(\checkmark\) \\
A1 \(\checkmark\) \\
m1 \\
A1 \(\checkmark\)
\end{tabular} \& 2
2

3

5 \& | Use of $\mathbf{F}=m \mathbf{a}$, must be applied to both components Correct acceleration |
| :--- |
| Use of $\mathbf{v}=\mathbf{u}+\mathbf{a} t$ with $\mathbf{u}=0 \mathbf{i}+0 \mathbf{j}$ |
| Correct \mathbf{v} |
| Use of constant acceleration equation to find \mathbf{r} with $\mathbf{u}=0 \mathbf{i}+0 \mathbf{j}$ |
| Correct expression |
| Correct \mathbf{r} in simplified form |
| Use of $\mathbf{r}+25 \mathbf{v}$ |
| Correct expression |
| Correct position vector |
| Finding magnitude |
| Correct distance from correct working |
| Alternative: Straight line method |
| M1 two distances r and $25 v$ |
| A1 for each distance |
| m 1 adding |
| A1 correct final answer |

\hline \& Total \& \& 12 \&

\hline $8(a)$

(b)

(c) \& \[
$$
\begin{aligned}
& 5=32 \sin 60^{\circ} t-4.9 t^{2} \\
& 4.9 t^{2}-32 \sin 60^{\circ} t+5=0 \\
& t=0.1866 \text { or } 5.4691 \\
& 5.47 \text { seconds } \\
& \\
& 32 \cos 60^{\circ} \times 5.469=87.5 \mathrm{~m} \\
& v_{H}=32 \cos 60^{\circ} \\
& v_{V}=32 \sin 60^{\circ}-9.8 \times 5.469=-25.88 \\
& v=\sqrt{16^{2}+25.88^{2}}=30.4 \mathrm{~ms}^{-1}
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |
| A1 |
| m1 |
| A1 |
| M1 |
| A1 |
| B1 |
| M1 |
| A1 |
| m1 |
| A1 | \& 5

2
2

5 \& | Equation for vertical motion with ± 5 |
| :--- |
| LHS correct |
| RHS correct |
| Solving quadratic |
| Selecting larger answer from two solutions or obtaining one answer with a reason |
| Equation for horizontal motion |
| Correct range |
| Horiz. component of velocity seen or used |
| Finding vertical component of velocity |
| Correct vertical component |
| Finding magnitude |
| Correct speed |
| $($ Note Max Height $=39.2 \mathrm{~m}$ from $t=2.83$) |

\hline \& Total \& \& 12 \&

\hline \& TOTAL \& \& 80 \&

\hline
\end{tabular}

