

General Certificate of Education

Mathematics and Statistics 6320 Specification B

MBD2 Discrete 2

Mark Scheme

2005 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key to Mark Scheme

Mmark is formethodmmark is dependent on one or more M marks and is formethodAmark is dependent on M or m marks and is foraccuraBmark is independent of M or m marks and is foraccura	od acy
A mark is dependent on M or m marks and is for accura	acy acy
	acy
B mark is independent of M or m marks and is for accura	5
	nation
	v through from previous
incom	rect result
cao correc	et answer only
cso correc	et solution only
	ing which falls within
awrt anyth	ing which rounds to
acf any co	orrect form
	er given
	al case
oe or equ	uivalent
	icant figure(s)
dp decim	nal place(s)
	(or 0) accuracy marks
-x ee deduc	et x marks for each error
pi possil	oly implied
sca substa	antially correct approach

Abbreviations used in Marking

MC - x	deducted x marks for mis-copy
MR - x	deducted x marks for mis-read
isw	ignored subsequent working
bod	given benefit of doubt
wr	work replaced by candidate
fb	formulae book

Application of Mark Scheme

mark as in scheme
zero marks unless specified otherwise
mark both/all fully and award the mean mark rounded down
award credit for the complete solution only
do not mark unless it has not been replaced
award method and accuracy marks as

Q	Solution	Marks	Total	Comments
1(a)(i)	There are vertices of odd degree, so the	B1	1	
	network is not Eulerian.			
(ii)	Odd vertices: A B F H	M1		
	Pairings <i>AB FH</i> : adds 80+60	A1		
	AF BH: adds >> 140	. 1		
	AH BF: adds >>140	A1		
	So shortest route has length $1100 + 140 = 1240$ metres.	B1	4	
	1100 + 140 - 1240 metres.	DI	4	
(iii)	e.g.AHFDBACGHFBCEGFEBA	M1A1		
()		Al	3	
(b)(i)	ACEGHFDBA	M1A1		
	50+50+50+50+60+70+60+80=470	A1	3	
(ii)	AH + seven other arcs each \geq 50	B1	1	
(iii)	Only two footpaths out of A are			
	<i>AB</i> , <i>AC</i> . Similarly for <i>D</i> and <i>H</i> .	B1		
	Then the only way to complete the route		_	
	via <i>E</i> is with <i>CE</i> , <i>EG</i> .	B1	2	
(iv)	(ii) the route of 470 beats any involving	M1		
	AH.			
	By (iii) the route of 470 is the <i>only</i> one not	A1	2	
	using AH and hence is the shortest.	AI	2	
	Total		16	
2(a)	111101100	B1	1	
(b)	REAR	B1	1	
(0)	A A	DI	1	
(c)				
(0)		M1		
	<i>▶</i> №	A1	2	
	, .			
(d)(i)	T=00	B1		
	T is at start and finish and	B1	2	
	$T=0 \Rightarrow$ word starts TT			
(**)				
(ii)		M1		
	A	A1	2	
		111	4	
	R E			
	R E Total		8	

Mathematics and Statistics B Discrete 2 MBD2 June 2005

www.theallpapers.com

MBD2 (cont)

Q	Solution	Marks	Total	Comments
3 (a)	Aux: $M^2 - M - 2 = 0$, roots 2, -1	M1A1		(or substitute given answer into the
	So comp function is $A.2^n + B.(-1)^n$	A1		relation)
	Particular solution $u_n = -\frac{1}{2}$ gives	M1		
	$(-\frac{1}{2}) - (-\frac{1}{2}) - 2 \cdot (-\frac{1}{2}) - 1$	A1	5	
	So general solution is these two added.			
(b)(i)	$u_0=0 \Rightarrow A + B - \frac{1}{2} = 0$			
	$u_1 = 1 \Longrightarrow 2A - B - \frac{1}{2} = 1$	M1		
	Solving gives $A = 2/3$, $B = -1/6$	A1		
	and $u_n = (2/3)2^n - (-1)^n/6 - \frac{1}{2}$	A1	3	
(ii)	$u_n = 2^{n+1}/3 - 1/6 - 1/2$ (<i>n</i> even)	B1		
(11)	$u_n = 2^{n+1}/3 = 1/6 = 1/2$ (<i>n</i> even) $u_n = 2^{n+1}/3 + 1/6 - 1/2$ (<i>n</i> odd)	B1		
	So the integer u_n is $2^{n+1/3}$ with its	DI		
	fractional bit removed.	B1	3	
	Total		11	
4(a)	000000	B1		
	e.g. $001110 + 110011 = 111101$	M1		
	and $110011 + 100010 = 010001$	A1	3	
(b)	$3^{\rm rd} = 4^{\rm th}$	B1		
(0)	5 - 4	DI		
	$\begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$	M1		
		A1√	3	ft
		1111	5	11
(c)	matrix $\times (0\ 1\ 0\ 0\ 0\ 1)^{\mathrm{T}} = (0\ 0\ 0)^{\mathrm{T}}$	M1		
	matrix $\times (1 \ 0 \ 1 \ 0 \ 1 \ 0)^{\mathrm{T}} = (1 \ 0 \ 1)^{\mathrm{T}}$	A1		
	and the			
	3 rd column			
	so first half correct and second half should			
	be 100010.	B1	3	
	Total		9	

MBD2 (cont)

Q	Solution	Marks	Total	Comments
5(a)	e.g. <i>S A B T</i> 4	M1		
	SACBT 2	A1		Any two paths
	SCDT 2	A1		Remaining
	SEDFT 3	A1		≻ paths to
	S E F T = 3 (total 14)	A1	5	→ make total 14
				(or 2 for cao)
(b)		M1 A1	2	
	(3+3+2+6=14)			
(c)(i)	Flow in $SE \le$ flow out at $E \le 3+3$	B1	1	
(ii)	Flow into <i>C</i> = flow out of $C \le 3+2 = 5$	M1		
()	So if AC has a flow of 4 then SC has a	A1	2	
	flow of at most 1.			
(iii)	If AC is saturated the maximum flows in	M1		
(111)	<i>SA, SC</i> and <i>SE</i> are 6 (its capacity), 1 (by	1011		
	part (ii)) and 6 (by part (i)). So if AC is			
	saturated the maximum flow out of S is			
	6+6+1=13 which is less than the			
	unrestricted maximum flow.	A1	2	
	Total		12	

MBD2 (cont)

Q	Solution	Marks	Total	Comments
6(a)	$p_2 = 1, p_3 = 3, p_4 = 6$	B1 B1	2	
(b)	4 new points created, hence $p_5 = \text{existing points} + 4$ Similarly when the <i>n</i> th line is added it adds <i>n</i> -1 new points.	B1 B1	2	
(c)	$p_n = p_{n-1} + (n-1)$ = $p_{n-2} + (n-2) + (n-1)$ = $p_1 + 1 + 2 + + (n-1)$ = $0 + 1 + 2 + + (n-1)$ = $\frac{1}{2}n(n-1)$	M1 A1 A1	3	(or direct verification by substitution)
	Total	D1	7	
7(a)	Maximise $P = 15x + 10y + 10z$ Subject to $(x \ge 0 y \ge 0 z \ge 0)$ $x + 2y + z \le 60$ $x + y + z \le 55$ $3x + 6y + 2z \le 140$	B1 B1 B1	3	one inequality the two others
(b)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B1 B1	2	coefficients of <i>x</i> , <i>y</i> , <i>z</i> appropriate slacks
(c)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1A1 M1A1 A1	5	pivot row operations
(d)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1A1 M1A1	4	
(e)	Maximum profit £700 Make 30 Xtrafast, 0 Yourelax, 25 Zizz e.g. Not helpful for people who want Yourelax.	B1√ B1√ B1	3	ft ft
	Total		17	
	TOTAL		80	