

# Mark scheme January 2004

## **GCE**

## **Mathematics A**

## **Unit MAS4**

Copyright © 2004 AQA and its licensors. All rights reserved.

#### **GCE:** Mathematics A – MAS4

### **Key to mark scheme**

| M                          | mark is for                                         | method                        |
|----------------------------|-----------------------------------------------------|-------------------------------|
| m                          | mark is dependent on one or more M marks and is for | method                        |
| A                          | mark is dependent on M or m mark and is for         | accuracy                      |
| В                          | mark is independent of M or m marks and is for      | method and accuracy           |
| E                          | mark is for                                         | explanation                   |
| $\sqrt{}$ or ft or ${f F}$ |                                                     | follow through from previous  |
|                            |                                                     | incorrect result              |
| CAO                        |                                                     | correct answer only           |
| AWFW                       |                                                     | anything which falls within   |
| AWRT                       |                                                     | anything which rounds to      |
| AG                         |                                                     | answer given                  |
| SC                         |                                                     | special case                  |
| OE                         |                                                     | or equivalent                 |
| A2,1                       |                                                     | 2 or 1 (or 0) accuracy marks  |
| -x EE                      |                                                     | Deduct x marks for each error |
| NMS                        |                                                     | No method shown               |
| PI                         |                                                     | Perhaps implied               |
| c                          |                                                     | Candidate                     |

### Abbreviations used in marking

| MC-x | deducted x marks for miscopy |
|------|------------------------------|
| MR-x | deducted x marks for misread |
| ISW  | ignored subsequent working   |
| BOD  | gave benefit of doubt        |
| WR   | work replaced by candidate   |

### Application of mark scheme

| Correct answer without working   | mark as in scheme                     |
|----------------------------------|---------------------------------------|
| Incorrect answer without working | zero marks unless specified otherwise |

Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

| Q     | Solution                                                                           | Marks | Total | Comments          |
|-------|------------------------------------------------------------------------------------|-------|-------|-------------------|
| 1     | $S_{xy} = 6140 - \frac{135 \times 301}{6} = -632.5$                                |       |       |                   |
|       | $\frac{1}{6}$                                                                      |       |       |                   |
|       | $S_{xx} = 3475 - \frac{135^2}{6} = 437.5$                                          | M1    |       |                   |
|       | $b = -\frac{632.5}{437.5} = -1.446$                                                | A1    |       |                   |
|       | $\overline{x} = \frac{135}{6} = 22.5 \ \overline{y} = \frac{301}{6} = 50.1\dot{6}$ | B1    |       | Both              |
|       | $a = 50.1\dot{6} - (-1.446) \times 22.5 = 82.70$                                   | M1    |       |                   |
|       | y = 82.7 - 1.45x                                                                   | A1    | 5     | AWRT              |
|       | Total                                                                              |       | 5     |                   |
| 2     | $H_0: P = 0.2$ $H_1: P > 0.2$                                                      | B1    |       | Both              |
|       | $X \sim B \text{ in } (20, 0.2)$                                                   | B1    |       | Stated or implied |
|       | $P(X \le 6) = 0.9133$                                                              | M1    |       | Use of tables     |
|       | $P(X \ge 7) = 0.0867$                                                              | A1    |       |                   |
|       | $> 0.05 \Rightarrow \text{Retain H}_0$                                             |       |       |                   |
|       | So selecting randomly                                                              | A1√   | 5     |                   |
|       | Total                                                                              |       | 5     |                   |
| 3 (a) | A straight line fits the points well                                               | E1    | 1     | OE                |
| (b)   | $S_{wy} = 1812 - \frac{91 \times 190}{6} = -1069 .\dot{6}$                         | B1    |       |                   |
|       | $S_{ww} = 2275 - \frac{91^2}{6} = 894.8\dot{3}$                                    | B1    |       |                   |
|       | $S_{yy} = 7296 - \frac{190^2}{6} = 1279.\dot{3}$                                   | B1    |       |                   |
|       | $r = \frac{-1069.\dot{6}}{\sqrt{894.83 \times 1279.3}} = -0.9997$                  | M1    |       |                   |
|       | $\sqrt{894.83 \times 1279.3}$                                                      | A1    | 5     |                   |
| (c)   | A curve fits almost exactly                                                        | E1    | 1     |                   |
|       | (or better than the line)                                                          |       |       |                   |
|       | Total                                                                              |       | 7     |                   |

| Q        | Solution                                                                       |       | Marks       | Total | Comments                              |
|----------|--------------------------------------------------------------------------------|-------|-------------|-------|---------------------------------------|
| 4 (a)    | $\frac{160}{500} = 0.32 \qquad \frac{205}{500} = 0.41$                         |       | B1          |       |                                       |
|          | Variance = $\frac{0.32 \times 0.68 + 0.41 \times 0.000}{500}$                  | 0.59  | M1<br>A1    |       |                                       |
|          | z = 2.5758                                                                     |       | B1          |       |                                       |
|          | $0.09 \pm 2.5758 \sqrt{\frac{0.32 \times 0.68 + 0.41 \times 0.59}{500}}$       |       | M1          |       |                                       |
|          | (0.0119, 0.168)                                                                |       | <b>A</b> 1  | 6     |                                       |
| (b)      | Do not agree                                                                   |       | E1√         |       |                                       |
|          | Zero not within CI                                                             |       | E1√         | 2     |                                       |
|          |                                                                                | Total |             | 8     |                                       |
| 5 (a)(i) | Rank Actual Estimate                                                           | Rank  |             |       |                                       |
|          | 7 140 100                                                                      | 6.5   |             |       |                                       |
|          | 5 210 150                                                                      | 5     |             |       |                                       |
|          | 2 630 500                                                                      | 1.5   | M1          |       | Ranking                               |
|          | 4 320 250                                                                      | 4     | A1          |       | Kanking                               |
|          | 6 160 100                                                                      | 6.5   |             |       |                                       |
|          | 1 700 500                                                                      | 1.5   |             |       |                                       |
|          | 3 450 350                                                                      | 3     |             |       |                                       |
|          | $\sum d^2 = \frac{1}{4} + 0 + \frac{1}{4} + 0 + \frac{1}{4} + \frac{1}{4} + 0$ |       | M1<br>A1    |       |                                       |
|          | $r_s = 1 - \frac{6 \times 1}{7 \times 48} = \frac{55}{56} = 0.982$             |       | A1          | 5     | Accept $r$ on ranks = $0.982$         |
| (ii)     | The trainee estimates order well but underestimates the weight                 |       | E1√<br>E1   | 2     | Accept 'Not close to the true values' |
| (b)      | $H_0: \rho_s = 0$ $H_1: \rho_s > 0$                                            |       | B1          |       | Both                                  |
|          | CV $\rho_s = 0.8571$                                                           |       | B1          |       |                                       |
|          | 0.982 > 0.8571                                                                 |       | M1          |       | Comparing                             |
|          | Reject H <sub>0</sub> so implying $\rho_s > 0$                                 |       | <b>A</b> 1√ | 4     |                                       |
|          |                                                                                | Total |             | 11    |                                       |

| Q       | Solution                                                                                                                                                         | Marks      | Total | Comments                           |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|------------------------------------|
| 6 (a)   | variance = $\frac{0.84 \times 0.16}{200}$                                                                                                                        | M1         |       |                                    |
| 0 (a)   | $\frac{200}{}$                                                                                                                                                   | A1         |       |                                    |
|         | z = 1.96                                                                                                                                                         | B1         |       |                                    |
|         | $0.84 \times 1.06 \sqrt{0.84 \times 0.16}$                                                                                                                       | M1         |       | SC: Numbers (157.83, 178.16) 3/5   |
|         | $0.84 \pm 1.96 \sqrt{\frac{0.84 \times 0.16}{200}}$                                                                                                              |            |       |                                    |
|         |                                                                                                                                                                  |            |       |                                    |
|         | (0.789, 0.891)                                                                                                                                                   | A1         | 5     |                                    |
| (b)     | 19                                                                                                                                                               | B1         | 1     |                                    |
| (c)     | $H_0: P = 0.9$ $H_1: P < 0.9$                                                                                                                                    | B1         |       | Both                               |
|         | 0.84 - 0.9                                                                                                                                                       | M1         |       |                                    |
|         | $zealc = \frac{0.84 - 0.9}{\sqrt{\frac{0.9 \times 0.1}{200}}}$                                                                                                   | <b>A</b> 1 |       | Accept working with numbers        |
|         | $\sqrt{200}$                                                                                                                                                     |            |       |                                    |
|         | =-2.828                                                                                                                                                          | A1         |       |                                    |
|         | zcrit = $-2.3263$                                                                                                                                                | B1         |       |                                    |
|         | Reject $H_0 \Rightarrow$ overstating                                                                                                                             | E1√        | 6     | Allow 'wrong' for 'overstating'    |
|         | Total                                                                                                                                                            |            | 12    |                                    |
| 7 (a)   | $E(\overline{X}_1 - \overline{X}_2) = E(\overline{X}_1) - E(\overline{X}_2)$                                                                                     | M1         |       |                                    |
|         | $=\mu_1-\mu_2$                                                                                                                                                   | A1         | 2     |                                    |
|         | $\operatorname{Var}(\overline{X}_1 - \overline{X}_2) = \operatorname{Var}(\overline{X}_1) + \operatorname{Var}(\overline{X}_2)$                                  | M1         |       |                                    |
|         | $=\frac{{\sigma_1}^2}{n_1}+\frac{{\sigma_2}^2}{n_1}$                                                                                                             | A1         | 2     |                                    |
|         | • •                                                                                                                                                              |            |       |                                    |
| (b) (i) | $V = \frac{\sigma_1^2}{\sigma_2^2} + \frac{\sigma_2^2}{\sigma_2^2}$                                                                                              | M1         |       |                                    |
|         | $n_1 \qquad n-n_1$                                                                                                                                               |            |       |                                    |
|         | $V = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n - n_1}$ $\Rightarrow \frac{dv}{dn_1} = \frac{-\sigma_1^2}{n_1^2} - \frac{\sigma_2^2}{(n - n_1)^2} \times (-1)$ | M1         |       |                                    |
|         | $dn_1 \qquad n_1^2 \qquad (n-n_1)^2$                                                                                                                             | A1         |       |                                    |
|         | $\frac{dv}{dn_1} = 0 \Rightarrow \frac{-\sigma_1^2}{n_1^2} = \frac{\sigma_2^2}{(n - n_1)^2} = \frac{\sigma_2^2}{n_2^2}$                                          |            |       |                                    |
|         | $dn_1 \qquad n_1^2 \qquad (n-n_1)^2 = n_2^2$                                                                                                                     | M1         |       |                                    |
|         | $\Rightarrow n_1: n_2 = \sigma_1: \sigma_2$                                                                                                                      | A1         | 5     |                                    |
| (ii)    | $\frac{\sigma_1}{\sigma_2} = \sqrt{\frac{0.0025}{0.0081}} = \frac{5}{9}$                                                                                         | M1         |       |                                    |
|         | $\Rightarrow n_1 = \frac{5}{14} \times 560 = 200$                                                                                                                | M1         |       | or $n_2 = \frac{9}{14} \times 560$ |
|         | $n_2 = 360$                                                                                                                                                      | <b>A</b> 1 | 3     |                                    |
|         | Total                                                                                                                                                            |            | 12    |                                    |
|         | Total                                                                                                                                                            |            | 60    |                                    |