

ASSESSMENT and

Mark scheme January 2004

GEE

Mathematics A

Unit MAS4

Copyright © 2004 AQA and its licensors. All rights reserved.

Key to mark scheme

M	mark is for	method
m	mark is dependent on one or more M marks and is for	method
A	mark is dependent on M or m mark and is for	accuracy
B	mark is independent of M or m marks and is for	method and accuracy
E	mark is for	explanation
\checkmark or ft or F		follow through from previous incorrect result
CAO		correct answer only
AWFW		anything which falls within
AWRT		anything which rounds to
AG		answer given
SC		special case
OE		or equivalent
A2,1		2 or 1 (or 0) accuracy marks
$-\boldsymbol{x}$ EE		Deduct x marks for each error
NMS		No method shown
PI		Perhaps implied
c		Candidate

Abbreviations used in marking

MC $-\boldsymbol{x}$	deducted x marks for miscopy
MR $-\boldsymbol{x}$	deducted x marks for misread
ISW	ignored subsequent working
BOD	gave benefit of doubt
WR	work replaced by candidate

Application of mark scheme

mark as in scheme
Incorrect answer without working zero marks unless specified otherwise

[^0]| Q | Solution | Marks | Total | Comments |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $\begin{aligned} & S_{x y}=6140-\frac{135 \times 301}{6}=-632.5 \\ & S_{x x}=3475-\frac{135^{2}}{6}=437.5 \\ & b=-\frac{632.5}{437.5}=-1.446 \\ & \bar{x}=\frac{135}{6}=22.5 \bar{y}=\frac{301}{6}=50.1 \dot{6} \\ & a=50.1 \dot{6}-(-1.446) \times 22.5=82.70 \\ & y=82.7-1.45 x \end{aligned}$ | M1
 A1
 B1
 M1
 A1 | 5 | Both
 AWRT |
| | Total | | 5 | |
| 2 | $\begin{aligned} & \mathrm{H}_{0}: \mathrm{P}=0.2 \quad \mathrm{H}_{1}: \mathrm{P}>0.2 \\ & X \sim \mathrm{~B} \text { in }(20,0.2) \\ & \mathrm{P}(X \leq 6)=0.9133 \\ & \mathrm{P}(X \geq 7)=0.0867 \\ & >0.05 \Rightarrow \text { Retain } \mathrm{H}_{0} \end{aligned}$
 So selecting randomly | B1
 B1
 M1
 A1
 Alv | 5 | Both
 Stated or implied
 Use of tables |
| | Total | | 5 | |
| 3 (a)
 (b)
 (c) | A straight line fits the points well $\begin{aligned} & S_{w y}=1812-\frac{91 \times 190}{6}=-1069 . \dot{6} \\ & S_{w w}=2275-\frac{91^{2}}{6}=894.8 \dot{3} \\ & S_{y y}=7296-\frac{190^{2}}{6}=1279 . \dot{3} \\ & r=\frac{-1069 . \dot{6}}{\sqrt{894.83 \times 1279.3}}=-0.9997 \end{aligned}$
 A curve fits almost exactly (or better than the line) | E1
 B1
 B1
 B1
 M1
 A1
 E1 | 5 | OE |
| | Total | | 7 | |

Q	Solution	Marks	Total	Comments
4 (a)	$\begin{aligned} & \frac{160}{500}=0.32 \quad \frac{205}{500}=0.41 \\ & \text { Variance }=\frac{0.32 \times 0.68+0.41 \times 0.59}{500} \\ & z=2.5758 \\ & 0.09 \pm 2.5758 \sqrt{\frac{0.32 \times 0.68+0.41 \times 0.59}{500}} \\ & (0.0119,0.168) \end{aligned}$ Do not agree Zero not within CI	B1 M1 A1 B1 M1 A1 E1 \checkmark E1 \checkmark	6	
	Total		8	
5 (a)(i)	Rank Actual Estimate Rank 7 140 100 6.5 5 210 150 5 2 630 500 1.5 4 320 250 4 6 160 100 6.5 1 700 500 1.5 3 450 350 3 $\sum d^{2}=\frac{1}{4}+0+\frac{1}{4}+0+\frac{1}{4}+\frac{1}{4}+0$ $r_{s}=1-\frac{6 \times 1}{7 \times 48}=\frac{55}{56}=0.982$ The trainee estimates order well but underestimates the weight $\begin{aligned} & \mathrm{H}_{0}: \rho_{s}=0 \quad \mathrm{H}_{1}: \rho_{s}>0 \\ & \mathrm{CV} \quad \rho_{s}=0.8571 \\ & 0.982>0.8571 \end{aligned}$ Reject H_{0} so implying $\rho_{s}>0$	M1 A1 M1 A1 A1 E1 $\sqrt{ }$ E1 B1 B1 M1 A1 $\sqrt{ }$	2	Ranking Accept r on ranks $=0.982$ Accept 'Not close to the true values' Both Comparing
	Total		11	

Q	Solution	Marks	Total	Comments
6 (a) (b) (c)	$\begin{aligned} & \text { variance }=\frac{0.84 \times 0.16}{200} \\ & z=1.96 \\ & 0.84 \pm 1.96 \sqrt{\frac{0.84 \times 0.16}{200}} \\ & (0.789,0.891) \\ & 19 \\ & \mathrm{H}_{0}: \mathrm{P}=0.9 \quad \mathrm{H}_{1}: \mathrm{P}<0.9 \\ & z \text { calc }=\frac{0.84-0.9}{\sqrt{\frac{0.9 \times 0.1}{200}}} \\ & \quad=-2.828 \\ & z \text { crit }=-2.3263 \\ & \text { Reject } \mathrm{H}_{0} \Rightarrow \text { overstating } \end{aligned}$	M1 A1 B1 M1 A1 B1 B1 M1 A1 A1 B1 E1 \checkmark	5	SC: Numbers (157.83, 178.16) 3/5 Both Accept working with numbers Allow 'wrong' for 'overstating'
	Total		12	
7 (a) (b) (i)	$\begin{aligned} & \begin{aligned} & \mathrm{E}\left(\bar{X}_{1}-\bar{X}_{2}\right)=\mathrm{E}\left(\bar{X}_{1}\right)-\mathrm{E}\left(\bar{X}_{2}\right) \\ &=\mu_{1}-\mu_{2} \end{aligned} \\ & \begin{aligned} \operatorname{Var}\left(\bar{X}_{1}-\bar{X}_{2}\right) & =\operatorname{Var}\left(\bar{X}_{1}\right)+\operatorname{Var}\left(\bar{X}_{2}\right) \\ & =\frac{\sigma_{1}{ }^{2}}{n_{1}}+\frac{\sigma_{2}{ }^{2}}{n_{1}} \end{aligned} \\ & V=\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n-n_{1}} \\ & \Rightarrow \frac{\mathrm{~d} v}{\mathrm{~d} n_{1}}=\frac{-\sigma_{1}^{2}}{n_{1}^{2}}-\frac{\sigma_{2}^{2}}{\left(n-n_{1}\right)^{2}} \times(-1) \\ & \frac{\mathrm{d} v}{\mathrm{~d} n_{1}}=0 \Rightarrow \frac{-\sigma_{1}^{2}}{n_{1}^{2}}=\frac{\sigma_{2}{ }^{2}}{\left(n-n_{1}\right)^{2}}=\frac{\sigma_{2}^{2}}{n_{2}^{2}} \\ & \Rightarrow n_{1}: n_{2}=\sigma_{1}: \sigma_{2} \\ & \frac{\sigma_{1}}{\sigma_{2}}=\sqrt{\frac{0.0025}{0.0081}}=\frac{5}{9} \\ & \Rightarrow n_{1}=\frac{5}{14} \times 560=200 \\ & n_{2}=360 \end{aligned}$	M1 A1 M1 A1 M1 M1 A1 M1 A1 M1 M1 A1	2 5 3	or $n_{2}=\frac{9}{14} \times 560$
	Total		12	
	Total		60	

[^0]: Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

