AQA

ASSESSMENTand
OUALIFICATIONS

General Certificate of Education

Mathematics 6300 Specification A

MAS3 Statistics 3

Mark Scheme
 2005 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key to Mark Scheme

Abbreviations used in Marking

MC - \boldsymbol{x}
MR - \boldsymbol{x}
ISW
BOD
WR
FB

Application of Mark Scheme

No method shown:

Correct answer without working
Incorrect answer without working
More than one method / choice of solution:
2 or more complete attempts, neither/none crossed out
1 complete and 1 partial attempt, neither crossed out
Crossed out work
Alternative solution using a correct or partially correct method

entile

method
method
accuracy
accuracy
explanation
follow through from previous incorrect
result
correct answer only
anything which falls within
anything which rounds to
answer given
special case
or equivalent
2 or 1 (or 0) accuracy marks
deduct x marks for each error
no method shown
possibly implied
substantially correct approach
candidate
significant figure(s)
decimal place(s)

MAS3

MAS3 (cont)

Q	Solution	Marks	Total	Comments
3	H_{0} : Median decrease $=5$ $\mathrm{H}_{1}:$ Median decrease $\neq 5$ Values of d-5 are Ignore zero so $n=9$ Values to be ranked are $\mathrm{d}-5:+1-1-1-2 \quad-4-3-5+3+2$ Rank: $\begin{aligned} & +2-2-2-4.5-8-6.5-9+6.5+4.5 \\ & \mathrm{~T}+=13 ; \mathrm{T}-=32 \end{aligned}$ Critical value of T for 2 -tailed test at 10% level is 8 $13>8$ so accept H_{0} Reasonable to claim that the median decrease is 5	$\begin{gathered} \text { B1 } \\ \text { B1 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1A1 } \\ \text { B1 } \checkmark \\ \text { B1 } \\ \hline \text { A1 } \\ \hline \end{gathered}$	\%	both; accept average A1 for ranking equal values either; ft on ranks ft on n ft on calculated and critical values of T
	Total		9	
4(a)	$\mathrm{H}_{0}: \sigma_{X}=15$ or $\sigma_{X}^{2}=225$ $\mathrm{H}_{1}: \sigma_{X}>15$ or $\sigma_{X}^{2}>225$ $v=9-1=8$ One-tailed test at 5% level so critical value of $\chi^{2}=15.5(07)$ Sample value of $\chi^{2}=\frac{8 \times 470.3}{225}$ $=16.7$ $16.7>15.5$ so reject H_{0} The evidence supports Evan's belief that $\sigma_{X}>15$ $\mathrm{H}_{0}: \sigma_{X}^{2}=\sigma_{Y}^{2}$ or $\sigma_{X}=\sigma_{Y}$ $\mathrm{H}_{1}: \sigma_{X}^{2}>\sigma_{Y}^{2}$ or $\sigma_{X}>\sigma_{Y}$ $v_{1}=8 ; \quad v_{2}=7-1=6$ One-tailed test at 5% level so $\mathrm{F}_{8,6}=4.15(4.147)$ Sample value $=\frac{s_{x}^{2}}{s_{y}^{2}}=\frac{470.3}{136.3}$ $=3.45$ $3.45<4.15$ so accept H_{0} There is not enough evidence to claim a decrease in standard deviation	B1 B1 B1 M1 A1 A1 \checkmark B1 B1 B1 M1 A1 A1 \checkmark	6	both AWRT ft on sample and critical values both or equivalent AWRT ft on sample and F values
	Total		12	

MAS3 (cont)

Q	Solution	Marks	Total	Comments
5(a)(i)	$\begin{aligned} \text { Standard error } & =2.7 \sqrt{\frac{1}{10}+\frac{1}{10}} \\ & =1.207 \end{aligned}$	M1 A1		(M1 if 9 instead of 10) AWFW 1.207 to 1.21; PI later
	Critical value is $z=2.3263$ Confidence limits are $\begin{aligned} & (37.6-31.3) \pm 2.3263 \times 1.207 \\ & \text { giving }(3.49,9.11) \end{aligned}$	B1 M1 A1	5	
(ii)	Lower CL >0 so evidence that there has been a reduction in average speed	E1	1	
(iii)	Width of CI is 5.62 (mph)	B1 \checkmark	1	ft on confidence interval
(b)(i)	$\begin{aligned} \text { Width } & =2 z \times \text { standard error } \\ & =2 \times 1.2265 \times 1.207 \\ & =2.961<3 \end{aligned}$	$\begin{aligned} & \text { B1M1 } \\ & \text { A1 } \downarrow \end{aligned}$	3	B1 for z-value ft on standard error from (a)(i) and z-value accept $<$ or $=$
(ii)	$\begin{aligned} & 2 \times 2.3263 \times 2.7 \sqrt{\frac{1}{n}+\frac{1}{n}} \leq 3 \\ & \sqrt{\frac{2}{n}} \leq 0.2388 \end{aligned}$	M1 A1		
	$n \geq \frac{2}{(0.2388)^{2}}=35.1$	$\begin{aligned} & \mathrm{m} 1 \\ & \mathrm{~A} 1 \end{aligned}$		appropriate method for solving inequality/equation including $\sqrt{\frac{k}{n}}$
	Minimum value of n is 36	A1	5	must be rounded up from result of calculation
(iii)	Method 2: higher confidence level so interval more likely to include true value of mean / larger samples so smaller standard error	E2	2	E1 for correct choice with appropriate reference to sample size
	Total		17	
	TOTAL		60	

