

ASSESSMENT and

Mark scheme January 2004

GEE

Mathematics A

Unit MAS3

Copyright © 2004 AQA and its licensors. All rights reserved.

Key to mark scheme

M	mark is for	method
m	mark is dependent on one or more M marks and is for	method
A	mark is dependent on M or m mark and is for	accuracy
B	mark is independent of M or m marks and is for	method and accuracy
E	mark is for	explanation
\checkmark or ft or F		follow through from previous incorrect result
CAO		correct answer only
AWFW		anything which falls within
AWRT		anything which rounds to
AG		answer given
SC		special case
OE		or equivalent
A2,1		2 or 1 (or 0) accuracy marks
$-\boldsymbol{x}$ EE		Deduct x marks for each error
NMS		No method shown
PI		Perhaps implied
c		Candidate

Abbreviations used in marking

MC $-\boldsymbol{x}$	deducted x marks for miscopy
MR $-\boldsymbol{x}$	deducted x marks for misread
ISW	ignored subsequent working
BOD	gave benefit of doubt
WR	work replaced by candidate

Application of mark scheme

mark as in scheme
Incorrect answer without working zero marks unless specified otherwise

[^0]

Q	Solution	Marks	Total	Comments
2	$\begin{aligned} \text { Sample ratio }= & \frac{s_{x}^{2}}{s_{y}^{2}} \\ & =\frac{2.4049}{0.5372} \\ & =4.477 \end{aligned}$ Degrees of freedom $\quad v_{1}=v_{2}=11$ 95% confidence interval so $p=0.975$ Critical value $\mathrm{F}_{11,11}=3.474$ $\begin{aligned} & \frac{1}{F} \leq \frac{\sigma_{x}^{2} / s_{x}^{2}}{\sigma_{y}^{2} / s_{y}^{2}} \leq F \\ & \frac{1}{3.474} \leq \frac{\sigma_{x}^{2} / \sigma_{y}^{2}}{4.477} \leq 3.474 \end{aligned}$ Confidence interval is (1.29, 15.6) Lower confidence limit > 1 Journey time is more variable from home to school than returning.	M1 A1 B1 B1 M1 A1 \checkmark A1 E1 \checkmark E1J		AWFW 4.47 to 4.48 CAO both CAO Use of ft on ratio and F value (AWRT 1.29, AWFW 15.5 to 15.6) ft on CI ft consistent with CI
	Total		9	
3 (a) (b)(i) (ii)	$\begin{aligned} & \mathrm{H}_{0}: \mathrm{P}(\text { prefer luxury blend })=0.5 \\ & \mathrm{H}_{1}: \mathrm{P}(\text { prefer luxury blend })>0.5 \end{aligned}$ Ignoring zero differences, sample size $n=9$ $X=$ Number who prefer luxury blend. Under $\mathrm{H}_{0} \quad X \sim \mathrm{~B}(9,0.5)$ Actual value of $X=7$ (or 2) $\begin{aligned} & \mathrm{P}(X \geq 7)=\mathrm{P}(x \leq 2) \\ & =0.0898 \\ & 0.0898<10 \% \text { so reject } \mathrm{H}_{0} \end{aligned}$ Evidence supports the claim that the luxury blend is preferred. Makes use of more information - takes into account size as well as direction of differences. Scores are subjective so differences cannot be reliably ranked.	B1 B1 B1 \checkmark B1 M1 AlV Al \checkmark E1 E1	1	CAO; may be implied ft on n : may be implied CAO ft on n and X ft on probability
	Total		9	

Q	Solution	Marks	Total	Comments
5 (a)	$\begin{array}{ll} \mathrm{H}_{0}: & \mu_{x}=1.7 \\ \mathrm{H}_{1}: & \mu_{x} \neq 1.7 \\ \alpha=0.10 \end{array}$	B1		Both
	Degrees of freedom $v=8-1=7$	B1		CAO
	Critical values of $t= \pm 1.895$	B1		AWFW 1.89 to 1.90
	$\begin{aligned} \text { Sample statistic } & t=\frac{\bar{x}-\mu_{x}}{\sqrt{\frac{s_{x}^{2}}{n}}} \\ = & =\underline{=} \end{aligned}$	M1		Use of
	$\sqrt{\frac{1.273}{8}}$	A1		All terms correct
	$=1.28$	A1		AWFW 1.27 to 1.28
	Sample t lies within -1.895 to +1.895 so reasonable to accept that $\mu_{x}=17$	A1 \checkmark	7	ft on t and critical value
(b)(i)	Pooled estimate of σ^{2} $=\frac{(7 \times 1.273)+(8 \times 1.719)}{8+9-2}$	M1		
	$=1.511$	A1		AWRT 1.51
	$\bar{y}-\bar{x}=14.30$	B1		CAO
	Degrees of freedom $v=15$ 95% interval $\Rightarrow p=0.975$	B1		CAO
	Critical value of $t=2.131$	B1		AWFW 2.13 to 2.14
	Confidence limits for $\mu_{y}-\mu_{x}$ are			
	$14.30 \pm 2.131 \times \sqrt{1.511} \times \sqrt{\frac{1}{8}}+\frac{1}{9}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \sqrt{ } \end{aligned}$		ft on t and σ^{2}
	95% confidence interval is ($13.0,15.6$)	A1	8	AWFW (13.0 to 13.1, 15.5 to 15.6)
(b)(ii)	75% of $17=12.75$			
	Or CI for \% increase is $(76.65,91.59)$	B1		
	75% lies below lower confidence limit so the claim is supported.		2	ft on CI
	Total		17	
	Total		60	

[^0]: Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

