

General Certificate of Education

Mathematics 6300 Specification A

MAS2/W Statistics 2

Mark Scheme

2005 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

MAS2/W

Q	Solution	Marks	Total	Comments
1	$X \sim \text{Po}(50)$			
	$X \sim N(50, 50)$	B1		CAO
	$P(X \ge 60) = P(Z > \frac{59.5 - 50}{\sqrt{50}})$	M1		use of continuity correction
	,	M1		(standardisation)
	= P(Z > 1.3435)			
	$=1-\Phi(1.34)$	m1		dependent on (standardisation)
	=1-0.90988			
	= 0.0901	A1	5	AWFW 0.0895 to 0.0902
	Total		5	
2(a)	$Y \sim \text{Geo}(0.8)$	B1	1	
(b)	$P(Y=5) = (0.2)^4 (0.8)$	M1		
	= 0.00128	A1	2	
(c)	$E(Y) = \frac{1}{p} = \frac{1}{0.8} = 1.25$	B1		CAO
	p = 0.8	D1		CARO
	Var $(Y) = \frac{q}{p^2} = \frac{0.2}{0.64} = \frac{5}{16}$			
	= 0.3125	B1	2	CAO
	Total		5	

MAS2/W (co Q	Solution	Marks	Total	Comments
3(a)	O 2 3 t	B2	2	B1 for straight line on [0, 2] B1 for curve on [2, 3]
(b)(i)	$P(T < 0.5) = \frac{1}{2} \times \frac{1}{2} \times \frac{3}{19} = \frac{3}{76}$	M1		or by integration: $\int_{0}^{0.5} \frac{6t}{19} dt = \left[\frac{3t^2}{19} \right]_{0}^{0.5}$
	= 0.0395	A1	2	$=\frac{3}{76}=0.0395$ (AG)
(ii)	$Y \sim$ number of times Suneil has to wait for less than 30 seconds			
	$Y \sim B (50, 0.0395)$	B1		
	Distributional approximation: $\mu = 50 \times 0.0395 = 1.975$			
	$\sigma^2 = 1.975 \times 0.9605 = 1.90$ ∴ $Y \approx \text{Po}(1.975)$ P(Y < 4) =	B1		AWFW 1.97 to 1.98
	$e^{-1.97} \left(1 + 1.97 + \frac{1.97^2}{2!} + \frac{1.97^3}{3!} \right)$	M1A1		
	= 0.8616	A1	5	AWFW 0.860 to 0.862
(c)	1 0 1 2	M1		
	$= \left[\frac{2t^3}{19}\right]_0^2 + \left[\frac{6t^3}{19} - \frac{3t^4}{38}\right]_2^3$	A1A1		
	$=\frac{16}{19} + \frac{33}{38}$	M1		
	$=\frac{65}{38}$ $=1.71$	A1	5	CAO
		AI		0.10
	Total		14	

Q	Solution	Marks	Total	Comments
4	$H_o: X \sim N(160, 64)$			
		M1		use of $z = \frac{x - \mu}{\sigma}$
				σ
	X z p X<150 -1.25 0.1056	A1		$z = \pm 1.25$
	X < 150	A1		$z = \pm 0.25$ $z = \pm 0.25$
	158 < X < 162 (-0.25, 0.25) 0.1974			
	$ \begin{array}{c cccc} 162 < X < 170 & (0.25, 1.25) & 0.2957 \\ \hline X > 170 & 1.25 & 0.1056 \\ \hline \end{array} $	M1		p = 0.1056
	$\sum p = 1$	M1		p = 0.2957
	<u></u>	A1		$p = 0.1974$ and $\sum p = 1$
	O_i E_i $(O_i - E_i)^2 / E_i$			
	11 21.12 4.8492	M1		$E_i = 200 \times p_i$
	67 59.14 1.0446			
	31 39.48 1.8214	2.54		$(o F)^2$
	64 59.14 0.3994 27 21.12 1.6370	M1		use of $\sum \frac{\left(O_i - E_i\right)^2}{E_i}$
	$\Sigma O_i = 200$ $\Sigma E_i = 200$ $\Sigma = 9.7517$			-i
		A1		AWFW 9.6 to 9.8
	$\nu = 5 - 1 = 4$	B1		
	$\chi^2_{5\%}(4) = 9.488$	B1√		AWRT 9.49
	∴ reject H _o			
	The evidence suggests that			
	N(160, 64) is not a suitable model	A1√	12	ft on χ^2 and critical value
	Total		12	

MAS2/W (co	Solution	Marks	Total	Comments
5(a)(i)	$(Y-X) \sim N(2, 6.25)$	B1		for Normal and $\mu = 2$
		B1	2	for 6.25
(ii)	$P(Y-X<0) = P\left(Z<\frac{0-2}{2.5}\right)$	M1		$z = \frac{0 - \text{their } \mu}{\text{their } r}$
	= P(Z < -0.80)	A1√		
	$= 1 - \Phi(0.80)$ = 1 - 0.78814			
	= 0.21186 = 0.212	A 1	3	AWRT 0.212
(b)	$B = X_1 + X_2 + X_3 + X_4 \sim N(64, 9)$ and			
	$G = Y_1 + Y_2 + Y_3 + Y_4 \sim N(72, 16)$	B1		
	$\therefore (B-G) \sim N(-8,25)$	M1A1		$(G-B) \sim N(8, 25)$
	P(B-G <5)			
	$= P\left(\frac{-5 - (-8)}{5} < Z < \frac{5 - (-8)}{5}\right)$	M1		
	= P(0.6 < Z < 2.6)	A 1		
	$=\Phi(2.6)-\Phi(0.6)$			
	= 0.99534 - 0.72575			
	= 0.26959	A1		
	$\therefore P(B-G >5)=0.730$	A 1	7	AWRT 0.730
				Alternative: $P[(P_1, G) \in S]$
				$P[(B-G)<-5]+P[(B-G)>5]=$ $\Phi(0.6)+[1-\Phi(2.6)]$
				= 0.7257 + 0.0047
				= 0.73041
				= 0.730
				0.750
	Total		12	

Q Q	Solution	Marks	Total	Comments
6(a)	$H_{o}: \mu = 65$	B1		
	$H_1: \mu > 65$	B1	2	
(b)	$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right) = N(65, 0.64)$	B1 B1	2	for 0.64 for Normal and 65
(c)	P(Type I error) =			
	P(H _o rejected when H _o true)			
	$= P(\overline{X} > 66.4 \text{ when } \mu = 65)$			
	= $P(\overline{X} > 66.4 \text{ when } \mu = 65)$ = $P(Z > \frac{66.4 - 65}{0.8})$	M1		
	=P(Z>1.75)	m1		area change
	=1-0.95994			
	= 0.04006	A1		AWRT 0.040
	∴ significance level of test ≈ 4%	A1√	4	ft on Type I error
(d)	P(Type II error) =			
	P(H _o accepted when H _o false)			
	$P(\overline{X} < 66.4 \text{ when } \mu = 67)$			
	$=P\bigg(Z<\frac{66.4-67}{0.8}\bigg)$	M1		
	=P(Z<-0.75)	A1		
	$=P(Z<-0.75)$ $=1-\Phi(0.75)$			
	=1-0.77337	m1		
	= 0.22663			
	= 0.227	A 1	4	AWRT 0.23
	Total		12	
	TOTAL		60	