GCE 2005 January Series

Mark Scheme

Mathematics A (MAS2)

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk
Copyright © 2005 AQA and its licensors. All rights reserved.
COPYRIGHT AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.
Set and published by the Assessment and Qualifications Alliance.
The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered

charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX.

Dr Michael Cresswell Director General

Key to Mark Scheme

М	mark is for	method
		more M marks and is for method
		n marks and is foraccuracy
		m marks and is for method and accuracy
		explanation
		follow through from previous
		incorrect result
CAO		correct answer only
		anything which falls within
		anything which rounds to
		answer given
		special case
		or equivalent
		2 or 1 (or 0) accuracy marks
		deduct x marks for each error
NMS		no method shown
PI		possibly implied
		substantially correct approach
c		candidate
SF		significant figure(s)
DP		decimal place(s)
MR – x ISW BOD WR		deducted x marks for mis-copy deducted x marks for mis-read ignored subsequent working given benefit of doubt work replaced by candidate formulae booklet
	Application of Mar	k Scheme
No method shown:		
	t working	mark as in scheme
	•	zero marks unless specified otherwise
	S	•
More than one metho	d/choice of solution:	
2 or more complete att		mark both/all fully and award the mean mark
crossed out	1,	rounded down
	al attempt, neither crossed out	award credit for the complete solution only
r comprete una r pures.	ar accompt, notation crossed out	awara create for the comprete solution only
Crossed out work		do not mark unless it has not been replaced
Alternative solution use correct method	ising a correct or partially	award method and accuracy marks as appropriate

MAS2

Q	Solution	Marks	Total	Comments
1(a)(i)	$S \sim B(12, 0.09)$	B1	1	
(ii)	$P(S \ge 4) = 1 - P(S \le 3)$	M1		AWRT
	=1-0.9820 = 0.018	A1	2	
(b)	Let $X =$ number of boxes which contain 4. or more eggs made with white chocolate			
	Then: $X \sim B(300, 0.018)$	B1		CAO
	$np = 300 \times 0.018 = 5.4$			
	$npq = 5.4 \times 0.982 \approx 5.3$ ⇒ use a Poisson approximation	M1		
	$X \approx P_o(5.4)$	A1		CAO
	$P(X \ge 3) = 1 - P(X \le 2)$	M1		$e^{-5.4} \left(1 + 5.4 + \frac{5.4^2}{2} \right)$
	$= 1 - \{P(X = 0) + P(X = 1) + P(X = 2)\}$			$= e^{-5.4} \times 20.98$
	=1-0.0948			=1-0.09476
	= 0.905	A1	5	AWRT = 0.905
	Total		8	

Q Q	Solution	Marks	Total	Comments
2(a)	$P(2 \le X \le 3) = F(3) - F(2)$	M1		
	$=\frac{27}{64}-\frac{1}{8}$			
	64 8			
	$=\frac{19}{64}=0.297$	A1	2	CAO/AWRT
	(2			
(b)	$f(x) = \begin{cases} \frac{3x^2}{64} & 0 \le x \le 4 \end{cases}$	M1A1	2	
(c)(i)	$E(X) = \int_0^4 x.f(x) dx$			
	$= \int_0^4 \frac{3x^3}{64} \mathrm{d}x$	M1		
	$=\frac{3x^4}{256}\bigg _0^4$	A1√		
	=3	A1	3	CAO
(ii)	$Var (X) = \int x^2 f(x) dx - \left[E(X)\right]^2$			
	$= \int_0^4 \frac{3x^4}{64} dx - (3)^2$			
		M1		
	$=\frac{3x^5}{320}\bigg _0^4-9$	A1√		on their $f(x)$ and μ^2
	$=9\frac{3}{5}-9$			
	$=\frac{3}{5}$ or 0.6	A1	3	CAO
	Total		10	

MAS2 (cont)				~
Q	Solution	Marks	Total	Comments
3(a)	$X \sim \text{Geo}(0.1)$	B1	1	
(b)	$P(X = 4) = (0.9)^3 \times (0.1)$ = 0.0729	M1 A1	2	AWRT
(c)		M1	2	AWKI .
	$P(X \le n) = 1 - (0.9)^n$ $\therefore 1 - (0.9)^n \ge 0.95$ $\Rightarrow (0.9)^n \le 0.05$	M1		
	$n = 28$ \Rightarrow $(0.9)^{28} = 0.0523$	M1		AWRT
	$n = 29$ \Rightarrow $(0.9)^{29} = 0.0471$	A1		CAO
	The minimum number of days = 29		4	
	Total		7	

MAS2 (cont)		3.6	TD ()	
Q	Solution	Marks	Total	Comments
4	H_0 : no association between their gender and type of holiday preferred	В1		(for at least (H ₀)
	H ₁ : there is an association between their gender and type of holiday Totals:			
	118 98 216 90 114 204 208 212 420	B1		CAO
	Expected frequencies:			
	$\frac{216 \times 208}{420} = 106.97$			
	$\frac{216 \times 212}{420} = 109.03$	M1		
	$\frac{204 \times 208}{420} = 101.03$	A1		
	$\frac{204 \times 212}{420} = 102.97$			
	v = 1	B1		
	$\sum \frac{\left[\left O_{i}-E_{i}\right -0.5\right]^{2}}{E_{i}}$	M1		Yates' correction
	=1.036+1.017+1.097+1.077			
	= 4.227:	A1		AWFW 4.20 to 4.24
	$\chi_{5\%}^{2}(1) = 3.841$	B1		(4.20 if E_i rounded to neareast integer)
	4.23 > 3.841 ∴ reject H _o	A1√		(Only if H ₀ stated)
	Evidence at the 5% level of an association between the gender of single people and			
	the type of holiday that they prefer to			
	take.	E1√	10	
	Total		10	

Q	Solution	Marks	Total	Comments
5(a)(i)	E(X-Y) = 120-90 = 30	B1	1	CAO
(40)	W(W W) 26+12 40	D.1		
(ii)	Var(X-Y) = 36+13 = 49	B1	1	CAO
(b)	P(X - Y > 40.5)			
(6)				
	$=P\left(Z>\frac{40.5-30}{7}\right)$	M1		CAO
	= P(Z > 1.5)	A1√		On their μ and r
	$=1-\Phi(1.5)$			
	=1-0.93319	m1		
	= 0.06681	A1	4	AWRT 0.0668
(c)(i)	$E(T) = E(X_1) + E(X_2) + 2E(Y)$			
(0)(1)	= 120 + 120 + 180			
	=420	B1		CAO
	$Var(T) = Var(X_1) + Var(X_2)$			
	+4Var(Y)	M1		
	=36+36+52			
	=124	A1	3	CAO
(ii)	$T \sim N(420,124)$			
	(400 420)			
	$P(T < 400) = P\left(Z < \frac{400 - 420}{\sqrt{124}}\right)$	M1		
	=P(Z<-1.796)	A1√		
	=1-0.96407	M1		
	= 0.03593	A1	4	AWFW 0.0355 to 0.0365
	Total		13	

Q Q	Solution	Marks	Total	Comments
6(a)	$H_o: \mu = 48$			
	$H_1: \mu > 48$	В1		(both)
	Since <i>n</i> is large, $\overline{X} \approx N\left(\mu, \frac{\sigma^2}{n}\right)$	Бī		(outi)
	(Central limit theorem)			
	\therefore for H ₀ true,			
	$\overline{X} \sim N\left(48, \frac{64}{100}\right) \sim N\left(48, (0.8)^2\right)$	В1		for 0.64
	$z = \frac{49.2 - 48}{0.8} = 1.50$	M1A1		
	$z_{crit} = \pm 1.6449$	B1		
	\therefore do not reject H_o	A1√		on their z & critical value
	Insufficient evidence at the 5% level to. reject the committee's claim	E1√	7	on their z & critical value
(b)	$P(\overline{X} < 48 + 0.8 \times 1.6449)$	M1A1		
	$=P\bigg(Z<\frac{49.316-50}{0.8}\bigg)$	M1		
	=P(Z<-0.8551)	A1		
	=1-0.80511			
	= 0.19489		_	
	= 0.195	A1	5	AWFW 0.189 to 01.98
	Total		12	
	Total		60	