GCE 2005 January Series

ASSESSMENT and
OUALIFICATIONS
ALLIANCE

Mark Scheme

Mathematics A

(MAS2)

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2005 AQA and its licensors. All rights reserved.

[^0]
Key to Mark Scheme

Abbreviations used in Marking

Application of Mark Scheme

No method shown:

More than one method/choice of solution:

2 or more complete attempts, neither/none crossed out
1 complete and 1 partial attempt, neither crossed out

Crossed out work

Alternative solution using a correct or partially correct method
mark both/all fully and award the mean mark rounded down
award credit for the complete solution only
do not mark unless it has not been replaced
award method and accuracy marks as appropriate

MAS2

MAS2 (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments

\hline 2(a) \& $$
\begin{aligned}
\mathrm{P}(2 \leq X \leq 3) & =\mathrm{F}(3)-\mathrm{F}(2) \\
& =\frac{27}{64}-\frac{1}{8} \\
& =\frac{19}{64}=0.297
\end{aligned}
$$ \& M1

A1 \& 2 \& CAO/AWRT

\hline (b) \& $$
\mathrm{f}(x)=\left\{\begin{array}{l}
\frac{3 x^{2}}{64} \quad 0 \leq x \leq 4
\end{array}\right.
$$ \& M1A1 \& 2 \&

\hline (c)(i) \& \[
$$
\begin{aligned}
\mathrm{E}(X) & =\int_{0}^{4} x \cdot \mathrm{f}(x) \mathrm{d} x \\
& =\int_{0}^{4} \frac{3 x^{3}}{64} \mathrm{~d} x \\
& =\left.\frac{3 x^{4}}{256}\right|_{0} ^{4} \\
& =3
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 \checkmark |
| A1 | \& 3 \& CAO

\hline (ii) \& \[
$$
\begin{aligned}
\operatorname{Var} & (X)=\int x^{2} \mathrm{f}(x) \mathrm{d} x-[\mathrm{E}(X)]^{2} \\
& =\int_{0}^{4} \frac{3 x^{4}}{64} \mathrm{~d} x-(3)^{2} \\
& =\left.\frac{3 x^{5}}{320}\right|_{0} ^{4}-9 \\
& =9 \frac{3}{5}-9 \\
& =\frac{3}{5} \text { or } 0.6
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1V | \& 3 \& | on their $\mathrm{f}(x)$ and μ^{2} |
| :--- |
| CAO |

\hline \& Total \& \& 10 \&

\hline
\end{tabular}

MAS2 (cont)

Q	Solution	Marks	Total	Comments
3(a)	$X \sim \operatorname{Geo}(0.1)$	B1	1	
(b)	$\mathrm{P}(X=4)=(0.9)^{3} \times(0.1)$	M1		
	$=0.0729$	A1	2	AWRT
(c)	$\begin{aligned} & \mathrm{P}(X \leq n)=1-(0.9)^{n} \\ & \therefore 1-(0.9)^{n} \geq 0.95 \end{aligned}$	M1		
	$\Rightarrow(0.9)^{n} \leq 0.05$	M1		
	$n=28 \quad \Rightarrow \quad(0.9)^{28}=0.0523$	M1		AWRT
	$n=29 \quad \Rightarrow \quad(0.9)^{29}=0.0471$	A1		CAO
	The minimum number of days $=29$		4	
	Total		7	

MAS2 (cont)

Q	Solution	Marks	Total	Comments
4	H_{0} : no association between their gender and type of holiday preferred H_{1} : there is an association between their gender and type of holiday Totals:	B1		(for at least (H_{0})
	118 98 216 90 114 204 208 212 420	B1		CAO
	Expected frequencies: $\frac{216 \times 208}{420}=106.97$	M1		
	$\frac{204 \times 208}{420}=101.03$ $\frac{204 \times 212}{420}=102.97$	A1		
	$\begin{aligned} & v=1 \\ & \sum \frac{\left[\left\|O_{i}-E_{i}\right\|-0.5\right]^{2}}{E_{i}} \\ & =1.036+1.017+1.097+1.077 \end{aligned}$	B1 M1		Yates' correction
	Evidence at the 5% level of an association between the gender of single people and the type of holiday that they prefer to take.	A1 B1 A1J E1V	10	AWFW 4.20 to 4.24 (4.20 if E_{i} rounded to neareast integer) (Only if H_{0} stated)
	Total		10	

MAS2 (cont)

Q	Solution	Marks	Total	Comments
5(a)(i)	$\mathrm{E}(X-Y)=120-90=30$	B1	1	CAO
(ii)	$\operatorname{Var}(X-Y)=36+13=49$	B1	1	CAO
(b)	$\mathrm{P}(X-Y>40.5)$			
	$=\mathrm{P}\left(Z>\frac{40.5-30}{7}\right)$	M1		CAO
	$\begin{aligned} & =\mathrm{P}(Z>1.5) \\ & =1-\Phi(1.5) \end{aligned}$	A1 \checkmark		On their μ and r
	$\begin{aligned} & =1-0.93319 \\ & =0.06681 \end{aligned}$	$\begin{aligned} & \text { m1 } \\ & \text { A1 } \end{aligned}$	4	AWRT 0.0668
(c)(i)	$\begin{aligned} \mathrm{E}(T) & =\mathrm{E}\left(X_{1}\right)+\mathrm{E}\left(X_{2}\right)+2 \mathrm{E}(Y) \\ & =120+120+180 \\ & =420 \\ \operatorname{Var}(T) & =\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right) \end{aligned}$	B1		CAO
	$\begin{aligned} & =36+36+52 \quad+4 \operatorname{Var}(Y) \\ & =124 \end{aligned}$	M1 A1	3	CAO
(ii)	$T \sim N(420,124)$			
	$\mathrm{P}(T<400)=\mathrm{P}\left(Z<\frac{400-420}{\sqrt{124}}\right)$	M1		
	$=P(Z<-1.796)$	A1 \checkmark		
	$\begin{aligned} & =1-0.96407 \\ & =0.03593 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	4	AWFW 0.0355 to 0.0365
	Total		13	

MAS2 (cont)

[^0]: COPYRIGHT
 AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

 Set and published by the Assessment and Qualifications Alliance.

 The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX.

