

General Certificate of Education

Mathematics 6300 Specification A

MAS1/W Statistics 1

Mark Scheme

2005 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

MAS1/W

Q	Solution	Marks	Total	Comments
1(a)	Length $X \sim N(48, 8^2)$			
	P(X=60)=0	B1	1	CAO
(b)	$P(X < 60) = P(Z < \frac{60 - 48}{8})$	M1		standardising (59.5, 60 or 60.5) with 48 and $(\sqrt{8}, 8 \text{ or } 8^2)$ and/or $(48-x)$
	= P(Z < 1.5) = 0.933	A1	2	AWRT (0.93319)
(c)	5% of 48 = 2.4	B1		CAO; OE
	P(48-x < X < 48+x)	M1		attempt at the probability of an interval, symmetric about 48
	= P(-0.3 < Z < 0.3)	A1		CAO 0.3
	$=\Phi(0.3)-(1-\Phi(0.3))$	m1		area change
	$=2\times0.61791-1$			
	= 0.235 to 0.236	A1	5	AWFW (0.23582)
	Total		8	

Q Q	Solution	Marks	Total	Comments
	Use of area for probability	M1	Total	may be implied in (a) or (b)
2(a)	Ose of area for probability	IVI I		may be implied in (a) of (b)
(i)	P(T < 10) = 0.9	A1		CAO
(ii)	P(T > 5) = 0.6	A1	3	CAO
(b)	$P(T < 10 T > 5) = \frac{P(5 < T < 10)}{P(T > 5)}$	M1 A1		attempt at conditional probability correct form
	$P(T < 10 T > 5) = \frac{P(5 < T < 10)}{P(T > 5)}$ $= \frac{(i) - (1 - (ii))}{(ii)}$	m1		
	$=\frac{0.9 - (1 - 0.6)}{0.6} = \frac{0.5}{0.6}$			
	$=\frac{5}{6}$ or 0.833	A1	4	CAO/AWRT
	OR			
	(Conditional) area above 5 is 6a	(M1)		attempt at area above 5
	(Conditional) area above 5 must = 1	(m1)		area must = 1 used
	Thus $a = \frac{1}{6}$	(A1)		
	Thus area below 10 is $(10-5)a$			
	$=\frac{5}{6}$ or 0.833	(A1)		CAO/AWRT
				Note: many candidates will quote answers without any working so: 3 correct 7 marks in total 2 correct in (a) 3 marks in (a) 1 correct in (a) 2 marks in (a) $\frac{x}{0.6} < 1 \text{ in (b)}$ 2 marks in (b) 0.5
				$\frac{0.5}{0.6} \text{ in (b)} \qquad 3 \text{ marks in (b)}$
	Total		7	

MAS1/W (cor	Solution	Marks	Total	Comments
3(a)	$A \sim B(15, 0.68)$			binomial only
	$P(A=10) = {15 \choose 10} (p)^{10} (1-p)^5$	M1		any p providing 0
	$= {15 \choose 10} (0.68)^{10} (0.32)^5$	A1		fully correct expression
	$=3003 \times 0.021139 \times 0.003355 = 0.213$	A1	3	AWRT
(b)	$B \sim B(40, 0.45)$			binomial only
	$P(15 \le B \le 20) = P(B \le 20 \text{ or } 19)$	M1		
	$-P(B \le 14 \text{ or } 15)$	A1		must include minus
	= 0.7870 - 0.1326 = 0.654 to 0.655	A1	3	AWFW (0.6844 / 0.2142)
	OR			
	at least 3 terms for $B(40, 0.45)$ answer	(M1) (A2)		
(c)	$C \sim B(2700, 0.25)$			Normal approx only
	Mean $(\mu) = 675$	B1		CAO
	Variance $\left(\sigma^2\right) = 506(.25)$	В1		AWRT; SD = 22.5 CAO
	$P(C_B < 700) = P(C_N < 699.5)$	B1		CAO
	$= P \left(Z < \frac{699.5 - 675}{22.5} \right)$	M1		standardising (699.5, 700 or 700.5) using $\sqrt{(\mu \& \sigma)}$; not σ^2
	= P(Z < 1.09) = 0.861 to 0.863	A1	5	allow $(675 - x)$ AWFW
		711	3	AWI W
(d)	For each of the 15 times Walk A is offered select	B1		CAO
	6 numbers covering at least range 1 to	B1		1 to 60; may be implied by e.g. 2-digit
	Ignore repeats and numbers outside range	B1	3	or (calc value) × 60 either point
	e			Note: Use of (a) 0.45, (b) 0.25, (c) 0.30 \Rightarrow max of M1 A1 A0, M1 A1 A0, B1 B1 B1 M1 A0, 3
	Total		14	21

Q	Solution	Marks	Total	Comments
4(a)(i)	Weight, $X \sim N(\mu, 1.6^2)$			
	$95\% \Rightarrow z = 1.96$	В1		CAO
	CI for μ is $\overline{x}(\mu) \pm z \times \frac{\sigma(s)}{\sqrt{n}}$	M1		use of; must have $(\div \sqrt{n})$ with $n > 1$
	Thus $49.2 \pm 1.96 \times \frac{1.6}{\sqrt{10}}$	A1√		$\sqrt{\text{ on } z \text{ only }}$
	(48.2, 50.2)	A1	4	AWRT; dependent on fully correct expression
(ii)	CI includes 50 or UCL > 50	B1√		√ on CI
	so suspicion is not supported	B1√	2	√ on CI; dependent on first B1
(b)	Require $z \frac{\sigma}{\sqrt{n}} = \text{or} \le \text{or } < \frac{0.75}{2} \text{ or } 0.75$	M1		use of $z \frac{\sigma}{\sqrt{n}}$ with <i>n</i> unknown
	Thus $1.96 \times \frac{1.6}{\sqrt{n}} = \frac{0.75}{2} = 0.375$ or 0.75	A 1√		on z; ignore signs
	Thus $n = \left(\frac{1.96 \times 1.6}{0.375}\right)^2$	m1		attempt at solving for <i>n</i>
	Thus $n = 70$	A 1	4	CAO (18 with no \div 2)
				Note:
				Method of 'trial and improvement': Answer = 18 CAO B2 Answer = 70 CAO B4
	Total		10	

Q Q	Solution	Marks	Total	Comments
5(a)	$L \sim (580, 1600)$ $G = \frac{L}{2} + 80$			
	$E(G) = \frac{580}{2} + 80 = 370$ $V(G) = \frac{V(L)}{4}$	B1		CAO
	$V(G) = \frac{V(L)}{4}$	M1		use of $V(aX + b) = a^2 \times V(X)$ with $a \ne 1$ and $b > 0$
	= 400	A 1	3	CAO
(b)(i)	R = 1000 - L - G	M1		use of
	$R = 1000 - L - G$ $= 920 - \frac{3L}{2}$	A1	2	CAO; OE
(ii)	$E(R) = 920 - \frac{3 \times 580}{2} = 50$ $V(R) = \frac{9 \times V(L)}{4}$	B1		CAO
	$V(R) = \frac{9 \times V(L)}{4}$	M1		Use of $V(aX + b) = a^2 \times V(X)$ with $a \neq \pm 1$ and $b > 0$ applied to expression for R
	= 3600	A1	3	CAO
				Note:
				$\sqrt{1600} + \sqrt{400} = 40 + 20 = 60$
				and $60^2 = 3600$
	Total		8	

Q Q	Solution	Marks	Total	Comments
6(a)(i)	$X \sim R(a, a+k)$			
	$V(X) = \frac{(a+k-a)^2}{12} = \frac{k^2}{12}$	B1		CAO use of $(b-a)$ must include $= k$
	$= 48 \Rightarrow k^2 = 576 \Rightarrow k = 24$ or $k = 24 \Rightarrow \frac{k^2}{12} = \frac{24^2}{12} = 48$	B1	2	CAO; AG
(ii)	$E(X) = \frac{a+k+a}{2} = a + \frac{k}{2}$	B1		CAO; OE use of $(a+b)$ must include $=(2a+k)$ OE
	$= 6 \Rightarrow a + 12 = 6 \Rightarrow a = -6$ or $a = -6 \Rightarrow a + \frac{k}{2} = -6 + 12 = 6$	B1	2	CAO; AG
(b)	$P(X > 0) = \frac{a+k-0}{a+k-a} = \frac{a+k}{k}$	M1		attempt at area of a rectangle of height $\frac{1}{k}$
	$=\frac{3}{4}$ or 0.75	A1	2	CAO
(c)(i)	$Mean (\bar{X}) = 6$	B1		CAO
	$SE(\overline{X}) = \sqrt{\frac{V(X)}{n}}$	M1		use of; allow no $\sqrt{}$
	= 0.8	A1	3	CAO
(ii)	Sample size is large $(n > 30)$			
	or Central Limit Theorem	В1	1	
(iii)	$P(\overline{X} > 7) = P\left(Z > \frac{7-6}{0.8}\right)$	M1		standardising 7 with answers to (i) and/or $(6-x)$
	$= P(Z > 1.25) = 1 - \Phi(1.25)$	m1		area change
	= 0.105 to 0.106	A1	3	AWFW (0.10565)
	Total		13	
	TOTAL		60	