GCE 2004 June Series

Mark Scheme

Mathematics A Unit MAS1/W

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from:

Publications Department, Aldon House, 39, Heald Grove, Rusholme, Manchester, M14 4NA Tel: 0161 953 1170

or

download from the AQA website: www.aqa.org.uk

Copyright © 2004 AQA and its licensors

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX. Dr Michael Cresswell Director General

www.theallpapers.com

Key to Mark Scheme

M	mark is for	method
m	mark is dependent on one of	more M marks and is for method
A	mark is dependent on M or	m marks and is foraccuracy
B	mark is independent of M o	r m marks and is formethod and accuracy
Е	mark is for	explanation
		follow through from previous
		incorrect result
CAO		correct answer only
AWFW		anything which falls within
AWRT		anything which rounds to
		answer given
		special case
		or equivalent
A2,1		
		deduct <i>x</i> marks for each error
		no method shown
PI		possibly implied
		substantially correct approach
c		candidate
		significant figure(s)
DP		decimal place(s)

Abbreviations used in Marking

MC – <i>x</i>	deducted x marks for mis-copy
MR – <i>x</i>	
ISW	ignored subsequent working
BOD	
WR	work replaced by candidate
FB	formulae booklet

Application of Mark Scheme

No method shown:

Correct answer without working Incorrect answer without working	
More than one method/choice of solution: 2 or more complete attempts, neither/none crossed out 1 complete and 1 partial attempt, neither crossed ou	mark both/all fully and award the mean mark rounded down t award credit for the complete solution only
Crossed out work	do not mark unless it has not been replaced
Alternative solution using a correct or partially correct method	award method and accuracy marks as appropriate

MAS1/W

Q	Solı	ıtion	Marks	Total	Comments
1(a)	$L \sim N(10.25, \sigma^2)$				
	$P(L < 10) = P\left(Z < C\right)$	$\frac{10\!-\!10.25}{\sqrt{0.04}}\Bigg) =$	M1		standardising (9.5, 10 or 10.5) with $(\sqrt{0.04}, 0.04 \text{ or } 0.04^2)$ and/or $(10.25 - 10)$
		P(Z < -1.25) =	A1		cao; ignore sign
		$1 - \Phi(1.25) =$ 1 - 0.89435 =	m1		area change
		0.105 to 0.106	A1	4	awfw
(b)	P(L > 10) = 0.98				
	$z_{0.98} = -2.0537$		B1		awfw 2.05 to 2.06; ignore sign
	Also $z = \frac{10}{2}$	$\frac{0-10.25}{\sigma}$	M1		standardising (10 or 10.5) with 10.25 and σ ; allow (10.25 – 10)
	Thus $\frac{10-10}{\sigma}$	$\frac{0.25}{2} = -2.0537$	m1		equating <i>z</i> -term to <i>z</i> -value; not using 0.98, 0.02 or $ 1 - z $
	Thus $\sigma = 0.1$	121 to 0.122	A1	4	awfw; do not ignore sign
					(A0 if negative sign dropped)
		Total		8	

2(a)

f(x)

k

0+ Ó

Q

Mark Scheme

Solution	Marks	Total	Comments
	B1		<i>x</i> -axis; (0) to 60
	B1		f(<i>x</i>)-axis; (0) to <i>k</i> or 0.025
	B1		+ve slope straight line; 0 to 40
	B1	4	horizontal straight line; 40 to 60
20 40 60 x			(allow minor extensions)
			(0 for axes reversed)
under graph = 1	M1		use of; may be implied by their area

(b) Area under graph = 1 M1
Area =
$$\left(\frac{1}{2} \times 40 \times k\right)$$
 + $(20 \times k)$ M1

= 28.75k or (1 - 11.25k)

= 23/32 or 0.719

Area =
$$\left(\frac{1}{2} \times 40 \times k\right)$$
 + $(20 \times k)$ M1
or
Area = $k \times \left(\frac{60 + 20}{2}\right)$

$$\begin{array}{c} \text{Area} = k \times \left(\frac{1}{2} \right) & = 40k \\ \text{(implies } k = 0.025) & \text{A1} & 3 \\ \text{(implies } k = 0.025) & \text{A1} & 3 \\ \text{A1} & \text{Cao; or equivalent} \\ \text{AG} & \text{(Area} = 40k \Rightarrow M0 \text{ M1 A1}) \\ \text{Cao; or equivalent} & \text{AG} \\ \text{(Area} = 40k \Rightarrow M0 \text{ M1 A1}) \\ \text{Cao/awrt or equivalent} & \text{Cao/awrt or equivalent} \\ \text{Or} & \left[\frac{kx^2}{80} \right]_0^{30} \\ P(X > 30) = \\ \left(10 \times \left(\frac{0.75k + k}{2} \right) \right) + (20 \times k) \\ \text{Or} & 1 - \left(\frac{1}{2} \times 30 \times 0.75k \right) \end{array} \right)$$

A1

Total

must be stated for k = 0.025 assumed

area of (triangle + rectangle) [= 0.5 + 0.5 (+A1)]

area of (trapezium)

115*k*/4 or

cao/awrt

3

10

(1 - 45k/4)

(0.71875)

Q	Solution	Marks	Total	Comments
3(a)(i)	Binomial $n = 25$	M1		Attempted use of in part (a)
	$p_G = \frac{88}{400} (= 0.22)$	B1		cao; may be implied
	$P(G=2) = {\binom{25}{2}} (0.22)^2 (0.78)^{23} =$	M1		correct expression for B(25, p) (0 < p < 1) with $x = 2$
	$300 \times 0.0484 \times 0.0032974 =$ 0.0478 to 0.048	A1	4	Awfw (0.0478787) [watch for $(0.22)^2 = 0.048(4)$]
(ii)	$p_B = \frac{60}{400} \ (= 0.15)$	B1		cao; may be implied by correct answer
	$P(B \le 3) = 0.4705$ to 0.4715	B1	2	Awfw (0.4711(213))
(iii)	$p_R = \frac{160}{400} \ (= 0.4)$	B1		cao; may be implied by correct answer or ≥ 1 correct probability
	$P(8 \le R \le 12)$ = $P(R \le 12)$	M1		use of ≤ 12 M1 for ≥ 1 correct term
	$- P(R \le 7) = 0.8462 - 0.1536$	M1		M2 for 5 correct terms added use of $-$ and ≤ 7
	= 0.692 to 0.693	A1	4	Awfw (0.6926(805))
(b)	Number of trials/events or sample size or <i>n</i> is not fixed	B1		B0 for <i>n</i> not constant or decreasing, etc
	P(success) or $P(Y)$ or p is not constant	B1	2	accept trials/events are not independent or are dependent
	Total		12	

Q	Solution	Marks	Total	Comments
4(a)	$c = \frac{1}{230 - 140} = \frac{1}{90} \text{ or } 0.011$	B1	1	cao/awrt
(b)	$P(X < 200) = c \times (200 - 140)$	M1		attempt at area of a rectangle of height c
	$=\frac{2}{3}$ or 0.67	A1	2	cao/awrt
(c)	Mean: $\mu = \frac{230 + 140}{2} = 185$	B1		сао
	Variance $\sigma^2 = \frac{(230 - 140)^2}{12} = 675$	B1	2	cao
(d)	Large sample or Central Limit Theorem	B1		or equivalent (eg $n \ge 25$)
	\overline{X} is normal with mean = 185	B1√		both; \checkmark on part (c) for mean
	and variance = $\frac{\sigma^2}{75}$	M1		use of their $\sigma^2 \div$ by 75 (may be implied)
	= 9	A1	4	cao
	Total		9	

Q	Solution	Marks	Total	Comments
5(a)	270 8020	B1		awrt (5.7121)
	$\operatorname{SE}(\overline{T}) = \sqrt{\frac{\operatorname{Var}(T)}{50}}$	M1		use of
	= 0.338	A1	3	Awrt [cannot be scored in part (b)(i)]
(b)(i)	$\bar{t} = \frac{143.5}{50} = 2.87$	B1		cao; can be scored in part (a)
	99% implies $z = 2.5758$	B1		awfw 2.57 to 2.58
	CI for μ is: $\bar{t} \pm z \times \frac{(s \text{ or } \sigma)}{\sqrt{n}}$	M1		use of; must have \sqrt{n} with $n > 1$ or equivalent
	or $\bar{t} \pm z \times SE(\bar{t})$			or \sqrt{n} in SE (\bar{t})
	Thus: $2.87 \pm (2.5758 \times 0.338)$	A1√		$$ on \bar{t} , z and SE $(\bar{t}) > 0$; accept $\bar{t} = 143.5$ only if clearly stated
	Thus: (2.00, 3.74)	A1	5	awrt; accept 2 dependent on ÷ by 49 in part (a) unless subsequently corrected
(ii)	Evidence to suggest that $\mu = 3.5$ as 3.5 inside CI	B1√ B1√	2	$\sqrt[]{}$ on part (b)(i) clearly stated; $\sqrt[]{}$ on part (b)(i)
(c)	Now evidence to suggest that μ has changed/increased from 3.5 (as 3.5 outside/below CI)	B1		reason not required
	Also evidence (to suggest μ has increased during three months) as CIs do not overlap	B1	2	reason required
	Total		12	

Q	2011()	n		Marks	Total	Comments	
6(a)	Area of rectar						
	$A = S \times \left(2 + \frac{40}{S}\right) = 2S + 40$			B1		cao; may be implied by $E(A) = 50$	
	Mean: $E(A) = 2 \times 5 + 40 = 50$				B1		cao
	Variance: $Var(A) = 2^2 \times Var(S)$			M1		use of $Var(aX + b) = a^2 Var(X)$ with $a > 1$ and $b \ge 0$	
			= 4 × 33	= 132	A1	4	cao
(b)(i)	<i>s</i> :	1 5	10	20			
	t = 40/s:	40 8	3 4	2	B1		cao or equivalent
	<i>p</i> : 0	0.5 0.	3 0.1	0.1			
	$\mathbf{E}(T) = \sum t \times$	$\mathbf{P}(S=s)$	$=\sum t \times p$)	M1		use of $\sum x \times P(X = x)$
	$= 40 \times 0.5 + 8$ = 20 + 2 = 23				A1	3	cao or equivalent AG
(ii)	Perimeter of rectangle is given by:						
	$P = 2 \times (S + (2 + T)) = 2S + 2T + 4$						
	Mean: $E(P) =$	$\times 23 + 4$		D2	2		
		= 60		Total	B2	2 9	cao
				Total		<u> </u>	