# GCE 2005 January Series



# Mark Scheme

# Mathematics A (MAS1)

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2005 AQA and its licensors. All rights reserved.

#### COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX. Dr Michael Cresswell Director General

# Key to Mark Scheme

| M mark is for               | method                                    |
|-----------------------------|-------------------------------------------|
| m mark is dependent on one  | or more M marks and is for method         |
| A mark is dependent on M of | or m marks and is foraccuracy             |
| B mark is independent of M  | or m marks and is for method and accuracy |
| E mark is for               | explanation                               |
| or ft or F                  | follow through from previous              |
|                             | incorrect result                          |
| САО                         | correct answer only                       |
| AWFW                        | anything which falls within               |
| AWRT                        | anything which rounds to                  |
| AG                          | answer given                              |
|                             | special case                              |
|                             | or equivalent                             |
| A2,1                        |                                           |
| <i>-x</i> EE                | deduct <i>x</i> marks for each error      |
| NMS                         | no method shown                           |
| PI                          | possibly implied                          |
| SCA                         | substantially correct approach            |
| c                           | candidate                                 |
| SF                          | significant figure(s)                     |
| DP                          | decimal place(s)                          |
|                             |                                           |

## Abbreviations used in Marking

| MC – <i>x</i> |                            |
|---------------|----------------------------|
| MR – <i>x</i> |                            |
| ISW           | ignored subsequent working |
| BOD           |                            |
| WR            |                            |
| FB            |                            |

## **Application of Mark Scheme**

#### No method shown:

| Correct answer without working   | mark as in scheme |
|----------------------------------|-------------------|
| Incorrect answer without working |                   |

#### More than one method/choice of solution:

| 2 or more complete attempts, neither/none crossed out            | mark both/all fully and award the mean mark rounded down |
|------------------------------------------------------------------|----------------------------------------------------------|
| 1 complete and 1 partial attempt, neither crossed out            |                                                          |
| Crossed out work                                                 | do not mark unless it has not been replaced              |
| Alternative solution using a correct or partially correct method | award method and accuracy marks as appropriate           |

# MAS1

| MASI    |                                                                                                     |                  |       |                                                                                               |
|---------|-----------------------------------------------------------------------------------------------------|------------------|-------|-----------------------------------------------------------------------------------------------|
| Q       | Solution                                                                                            | Marks            | Total | Comments                                                                                      |
| 1(a)(i) | Time, $X \sim N(12, 2.5^2)$                                                                         |                  |       |                                                                                               |
|         | $P(X < 15) = P(Z < \frac{15 - 12}{2.5})$                                                            | M1               |       | standardising (14.5, 15 or 15.5) with $(\sqrt{2.5}, 2.5 \text{ or } 2.5^2)$ and/or $(12 - x)$ |
|         | P(Z < 1.2) = 0.885                                                                                  | A1               | 2     | AWRT (0.88493)                                                                                |
| (ii)    | P(10 < X < 15) = (i) - P(X < 10)<br>= 0.88493 - P(Z < 0.8)                                          | M1               |       | OE                                                                                            |
|         | $= 0.88493 - (1\Phi(0.8))$                                                                          | M1               |       | area change                                                                                   |
|         | = 0.88493 - (1 - 0.78814) = 0.673                                                                   | A1               | 3     | AWRT (0.67307)                                                                                |
| (b)(i)  | $\overline{y} = \frac{835.0}{50} = 16.7$                                                            | B1               |       | CAO                                                                                           |
|         | $s^2 = \frac{533.61}{49} = 10.89$ or $s = 3.3$                                                      |                  |       | CAO; either                                                                                   |
|         | $v = \frac{533.61}{50} = 10.6722$ or $\sqrt{v} = 3.2668$                                            | B1               |       | AWRT 10.67 or AWRT 3.27                                                                       |
|         | $99\% \Rightarrow z = 2.5758$                                                                       | B1               |       | AWFW 2.57 to 2.58                                                                             |
|         | CI for $\mu$ is<br>$\overline{y} \pm z \times \frac{\left(s \text{ or } \sqrt{v}\right)}{\sqrt{n}}$ | M1               |       | use of; must have $(\div \sqrt{n})$ with $n > 1$                                              |
|         | Thus: 16.7 $\pm 2.5758 \times \frac{(3.3 \text{ or } 3.27)}{\sqrt{50}}$                             | A1√              |       | $$ on $\overline{y}$ , z, (s or $\sqrt{v}$ ); not on n                                        |
|         | Thus: (15.5, 17.9)                                                                                  | A1               | 6     | AWRT; dependent on ÷ 49 for variance unless subsequently corrected                            |
| (ii)    | Adding 25% to 12 gives 15<br>Since 15 is outside/below CI<br>Mustafa's suspicion is supported       | B1<br>E1√<br>B1√ | 3     | CAO; seen somewhere $$ on (b)(i); must use 15 $$ on (b)(i); must use 15                       |
|         | Total                                                                                               | 211              | 14    |                                                                                               |
|         | Total                                                                                               |                  | 11    |                                                                                               |

MAS1(cont)

| Q        | Solution                                                   | Marks | Total | Comments                                                                          |
|----------|------------------------------------------------------------|-------|-------|-----------------------------------------------------------------------------------|
| 2(a)     | Simple                                                     | B1    | 1     |                                                                                   |
|          |                                                            | D1    | 1     |                                                                                   |
| (b)(i)   | Stratified                                                 | B1    | 1     |                                                                                   |
| (ii)     | M: 6 P: 64 A: 30                                           | B2, 1 | 2     | CAO any one value $\Rightarrow$ B1                                                |
|          |                                                            |       |       | CAO all three values $\Rightarrow$ B2                                             |
| (iii)    | Number employees from 00 to 62<br>or from 01 to 63         | B1    |       | condone omission of leading 0                                                     |
|          | Obtain 6 (consecutive) 2-digit random                      | 21    |       |                                                                                   |
|          | numbers<br>Reject repeated numbers and numbers             | B1    |       | both points                                                                       |
|          | above 62 or 63                                             |       |       | either point                                                                      |
|          | (or numbers outside range)                                 | B1    | 3     |                                                                                   |
| (iv)     | 44 51                                                      | B1    |       | CAO                                                                               |
|          | 62 50 (62) 27 (80) 30<br>or from New BLUE Formulae Booklet | B1    |       | CAO                                                                               |
|          | 62 50                                                      | (B1)  |       | CAO                                                                               |
|          | (62) 27 (80) 30 (72) 07 (93) 38                            | (B1)  | 2     | CAO                                                                               |
|          | Total                                                      |       | 9     |                                                                                   |
| 3(a) (i) | Binomial: $n = 1000$ and $p = 0.2$ or 20%                  | B1    | 1     | CAO; or 3 equivalent points                                                       |
| (ii)     | Mean ( $\mu$ ) = 200                                       | B1    |       | CAO                                                                               |
|          | Variance $(\sigma^2) = 160$                                | B1    |       | CAO; ( $\sigma$ = 12.6 to 12.7 AWFW)                                              |
|          | $P(Y \ge 225) = P(Y > 224.5)$                              | B1    |       | CAO                                                                               |
|          | (2245,200)                                                 |       |       | standardising (224.5, 225 or 225.5) using $\sqrt{(\mu \& \sigma)}$ not $\sigma^2$ |
|          | $= P\left(Z > \frac{224.5 - 200}{\sqrt{160}}\right)$       | M1    |       | for B(1000, 0.2) $\Rightarrow$ 0.02765 M0                                         |
|          |                                                            |       |       | for 0.0276 to 0.0277 stated M0                                                    |
|          | $= P(Z > 1.937) = 1 - \Phi(1.937)$                         | m1    |       | area change                                                                       |
|          | = 0.0261 to                                                | A1    | 6     | AWFW                                                                              |
|          | 0.0269                                                     |       |       |                                                                                   |
| (b)      | The number of drawing pins selected is not fixed           | B1    |       | OE                                                                                |
|          |                                                            |       |       | <i>n</i> not fixed and (ie no context)                                            |
|          |                                                            |       |       | <i>p</i> not constant<br>or trials not independent B1                             |
|          | The probability of selecting a yellow                      | B1    | 2     | OE DI                                                                             |
|          | drawing pin is not constant                                | ы     |       |                                                                                   |
|          | Total                                                      |       | 9     |                                                                                   |

| Q Q  | Solution                                                                                                       | Marks                | Total | Comments                                                                                                                         |
|------|----------------------------------------------------------------------------------------------------------------|----------------------|-------|----------------------------------------------------------------------------------------------------------------------------------|
| 4(a) | f(x)                                                                                                           | B1<br>B1<br>B1<br>B1 | 4     | horizontal axis; 0 to 20<br>vertical axis; 0 to c or $1/12$<br>horizontal line @ c from 0 to 4<br>line from (4, c) to (20, 0)    |
| (b)  | Area under graph = 1<br>Area under graph = $4c + \frac{1}{2}(20 - 4)c = 12c$                                   | M1                   |       | use of<br>area of (rectangle + triangle)                                                                                         |
|      | or<br>$= \frac{c}{2}(4+20) = 12c$ Hence $12c = 1$ so $c = \frac{1}{12}$                                        | M1<br>A1             | 3     | area of (trapezium)<br>CAO; not decimal equivalent<br>(but accept 0.083)                                                         |
| (c)  | P(Length < 2.01) = P(X < 10)<br>f(10) = $\frac{5c}{8} = \frac{5}{96} = 0.0521$                                 | B1<br>B1√            |       | CAO<br>CAO/AWRT; $$ on <i>c</i> only                                                                                             |
|      | $P(X < 10) = 4c + \frac{1}{2}\left(c + \frac{5c}{8}\right)6$<br>or<br>$= 1 - \frac{1}{2}(20 - 10)\frac{5c}{8}$ | M1                   |       | area of (rectangle + trapezium)<br>or $\int_{2}^{4} c dx + \int_{4}^{10} \frac{c}{16} (20 - x) dx$ etc<br>1 – area of (triangle) |
|      | $= \frac{71c}{8} \text{ or } 1 - \frac{25c}{8}$ $= \frac{71}{96} \text{ or } 0.739 \text{ to } 0.740$          | A1                   | 4     | $\left[cx\right]_{0}^{4} + \left[\frac{c}{16}\left(20x - \frac{x^{2}}{2}\right)\right]_{4}^{10}  A1$ CAO/AWRT; accept 0.74       |
|      | Total                                                                                                          |                      | 11    |                                                                                                                                  |

### MAS1 (cont)

| Q     | Solution                                                                    | Marks        | Total | Comments                                                                     |
|-------|-----------------------------------------------------------------------------|--------------|-------|------------------------------------------------------------------------------|
| 5 (a) | $n = 16 \qquad p = 0.85$ $P(D = d) = {n \choose d} (0.85)^{d} (0.15)^{n-d}$ | M1           |       | correct expression for $B(n, 0.85)$ with any values of <i>n</i> and <i>d</i> |
|       | $P(D=12) = {\binom{16}{12}} (0.85)^{12} (0.15)^{4}$                         | A1           |       | fully correct expression; may be implied                                     |
|       | =1820×0.14224×0.00050625<br>= 0.130 to 0.132                                | A1           | 3     | AWFW; accept 0.13                                                            |
| (b)   | n = 30 $p = 0.85P(21 < D < 28) = P(22 ≤ D ≤ 27) =$                          |              |       | M0 for normal approximation                                                  |
|       | $P(4 < D' < 9) = P(3 \le D' \le 8) =$                                       | M1           |       | attempt at switching to $D'$<br>(working with $p = 0.15$ )                   |
|       | $P(D' \le l < 8) \text{ or } P(D' \le l < 9)$                               | A1           |       | less than or equal to 8 or 9 less than 8 or 9<br>(0.9903)                    |
|       | $-P(D' \le l < 2) \text{ or } P(D' \le l < 3)$                              | A1           |       | minus<br>(less than or equal to 2 or 3)<br>(less than 2 or 3)                |
|       | = 0.9722 - 0.1514 = 0.820 to $0.822$                                        | A1           |       | (0.3217) AWFW; accept 0.82                                                   |
|       | OR<br>At least 3 terms for B(30, 0.85)                                      |              |       |                                                                              |
|       | or<br>At least 3 terms for B(30, 0.15)                                      | (M1)         |       | attempted; may be implied                                                    |
|       | 6 to 8 terms (21 to 28) for B(30, 0.85)<br>or                               |              |       |                                                                              |
|       | 6 to 8 terms (2 to 9) for B(30, 0.15)<br>= $0.820$ to $0.822$               | (M1)<br>(A2) | 4     | attempted; may be implied<br>AWFW; accept 0.82                               |
|       | - 0.820 to 0.822                                                            | (112)        | 7     |                                                                              |
|       | lotal                                                                       |              | 1     |                                                                              |

| Q      | Solution                                                      | Marks | Total | Comments                                                       |
|--------|---------------------------------------------------------------|-------|-------|----------------------------------------------------------------|
| 6(a)   | $E(X) = 4$ $E(X^2) = 17.2$                                    |       |       |                                                                |
|        | $Var(X) = E(X^2) (E(X))^2$                                    | M1    |       | use of                                                         |
|        | $=17.2-4^{2}$                                                 |       |       |                                                                |
|        | =1.2                                                          | A1    | 2     | CAO                                                            |
| (b)    | $C = 2\pi(X+8)$                                               |       |       | OE                                                             |
|        |                                                               |       |       | Either                                                         |
|        | or $E(X+8) = 12$                                              | B1    |       | CAO                                                            |
|        | Thus $E(C) = 24\pi$                                           | B1    |       | CAO                                                            |
|        | $\operatorname{Var}(C) = 4\pi^2 \times \operatorname{Var}(X)$ | M1    |       | use of $V(aX+b) = a^2 \times V(X)$                             |
|        |                                                               |       |       | with $a > 1$ and $b > 0$                                       |
|        | Thus $\operatorname{Var}(C) = 4.8\pi^2$                       | A1√   | 4     | $$ on V(X); but must include $\pi^2$                           |
| (c)(i) | Area, $S = \pi (X+8)^2$                                       | M1    |       | use of $\pi r^2$                                               |
|        | $=\pi(X^{2}+16X+64)$                                          |       |       |                                                                |
|        | Thus $a = 16$ and $b = 64$                                    |       |       |                                                                |
|        | u = 10 and $v = 04$                                           | A1    | 2     | CAO both                                                       |
| (ii)   |                                                               |       |       |                                                                |
|        | $E(S) = \pi(E(X^{2}) + 16E(X) + 64)$                          | M1    |       | attempted application of E to expanded                         |
|        |                                                               |       |       | expression in (c)(i)<br>NO for use of $\Gamma(X^2) = 4^2 = 16$ |
|        |                                                               |       |       | M0 for use of $E(X^2) = 4^2 = 16$                              |
|        | $=\pi(17.2+64+64)=145.2\pi$                                   | A1    | 2     | CAO                                                            |
|        | Total                                                         |       | 10    |                                                                |
|        | Total                                                         |       | 60    |                                                                |

#### MAS1 (cont)