

Mark scheme January 2004

GCE

Mathematics A

Unit MAS1

Copyright © 2004 AQA and its licensors. All rights reserved.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723/MAAA/gtheellpape/SLCOM

AQA

Key to mark scheme

Μ	mark is for	method
m	mark is dependent on one or more M marks and is for	method
Α	mark is dependent on M or m mark and is for	accuracy
В	mark is independent of M or m marks and is for	method and accuracy
Ε	mark is for	explanation
or ft or F		follow through from previous
		incorrect result
CAO		correct answer only
AWFW		anything which falls within
AWRT		anything which rounds to
AG		answer given
SC		special case
OE		or equivalent
A2,1		2 or 1 (or 0) accuracy marks
-x EE		Deduct <i>x</i> marks for each error
NMS		No method shown
PI		Perhaps implied
c		Candidate

Abbreviations used in marking

MC - x	deducted x marks for miscopy
MR - x	deducted x marks for misread
ISW	ignored subsequent working
BOD	gave benefit of doubt
WR	work replaced by candidate

Application of mark scheme

Correct answer without working	mark as in scheme
Incorrect answer without working	zero marks unless specified otherwise

Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

1 (a) $P(T < 8) = (8 - 4) \times \left(\frac{0.05 + 0.1}{2}\right)$ M1 Trapezium or Worthwhile attempt at chowever divided	correct area,
$\{(8-4)\times 0.05\} + \{\frac{1}{2}\times (8-4)\times (0.1-0.05)\}$ Rectangle + triangle	
= 0.3 A1 2 CAO; OE	
(b)(i) Area under graph = 1 M1 Use of; may be implied	by their area;
Area = (a) + $\begin{array}{c} \text{accept } P(T > 8) = 1 - (a) \\ \text{clearly in reverse method} \end{array}$) must be stated
$\begin{cases} (s-8) \times 0.1 \} + \begin{cases} \frac{1}{2} \times (20-s) \times 0.1 \end{cases} & M1 \\ \text{or} & \text{graph or area above 8, h} \end{cases}$	area under given nowever divided
$\left(\frac{(20-8)+(s-8)}{2}\right) \times 0.1$	
Hence $0.05s = 0.5$ A1 3 CAO; OE	
(implies $s = 10$) (implies $s = 10$) (implies $s = 10$ so triangle area = $s = 10$ given rectangle area = max of M1 M1 A0	, assuming = 0.5 then showing rea = 0.2, scores
(ii) $P(T>15) = \frac{1}{2} \times (20 - 15) \times f(15)$ M1 Area of correct triangle	or $\int_{15}^{20} y \mathrm{d}x$
However using (b)	
f(15) = 0.05 B1 P(T > 15) = 0.125 A1 CAO; OE or $y = 0.2 - 0$	0.01x
Inus $P(I > 15) = 0.125$ A1 3 CAO; OE Total 8	

(2	Solution	Marks	Total	Comments
2	(a)	p = 0.85			
		<i>n</i> = 5			
		(5)			
		$P(X=4) = \begin{bmatrix} 3\\ 4 \end{bmatrix} (0.85)^4 (0.15)^1 =$	M1		Use of B (5 or 40, 0.85 or 0.15)
		(+)			in (a) or (b); may be implied
		$5 \times 0.52201 \times 0.15 = 0.391$ to 0.392	A1	2	AWFW
					(0.8352 - 0.4437 = 0.3915)
	(h)	n = 40			M0 for normal approximation
	(0)	Tables			
		$P(X > 30) = P(X \ge 31) = P(X' \le x')$	M1		Change to X'
		$P(X' \le 9) =$	A1		9,10 or 11; 0.970(1) or 0.988
		0.933	A1		AWRT; (0.9328)
		Calculator			
		P(X > 30) = P(X = 31, 32, 40)	(Ml)		9, 10 or 11 terms
		or			
		$P(X' \le 9) = P(X' = 9, 8,, 0)$	(<i>A1</i>)		At least one 3-part term correct
		0.022	(A1)	2	or 0.067
		0.935	(AI)	3	AWN1 M0 for normal approximation
	(c)	n = 250			
	()	Mean ($\mu = np$) = 212.5 or 37.5	B1		CAO; either
		and			
		Variance $(\sigma^2 = np(1-p)) = 31.875$	B1		AWFW 31.8 to 31.9
					or $\sigma = 5.64$ to 5.65
		$P(X_B < 200) = P(X_N < 199.5) =$	B1		CAO; accept X' and 50.5
		(1005, 2125)	M1		Standardising (199 5, 200, 200, 5)
		$P \left[Z < \frac{199.5 - 212.5}{\sqrt{21.875}} \right]$			or (49.5, 50, 50.5, 51, 51.5) using their
		(\st.875)			μ and their σ (not σ^2) consistently
					M0 for B (250, 0.85) = 0.0130
		= P(Z < -2.30) or P(Z > 2.30)			
		$= 1 - \Phi(2.30)$	m1		Attempt at area change
		= 0.010 to 0.011	A1	6	AWFW; 0.01065
		Total		11	

(2	Solution					Marks	Total	Comments	
3	(a)	Any non- (or e	two va -randor equival	alid dist m or no ent or a	tinct reas t repress ny other	sons sugg entative · valid rea	esting sons)	B2, 1	2	Omits students not entering SU – (1 or more reasons for this scores B1) Some students more likely to reply Some students will not reply Non random selection by Pina Students arriving in groups
(k)(i)	Nun	nber =	$\frac{86}{1032}$ ×	60 = 5			B1	1	CAO
	(ii)	Nun	nber stu	idents f	rom	(0)0 to	85	B1		86 consecutive values
		or from (0)1 to 86				86				
		Obtain 5 (consecutive) 2–digit random numbers to identify sample of students				idom nts	B1√		$5\sqrt{10}$ and 2-digit $\sqrt{10}$ on (i)	
		Reject repeated numbers			B1	3	Either; OE			
		or								
		Reje	ect num	bers ou	itside rai	nge				
1	(iii)					27 or 52		B1		Either CAO; first value
		52	27	95	(0)4	(0)6	66	B1	2	Either CAO; other 4 values
		79	33	72	79	96	17			
							Total		8	

Q	Solution	Marks	Total	Comments
4(a)(i)	$X \sim N(\mu_X 3^2)$			
	$P(X < 1010) = P\left(Z < \frac{1010 - 1005}{3}\right) =$	M1		Standardising (1009.5, 1010 or 1010.5) with $(\sqrt{3}, 3 \text{ or } 3^2)$ and/or (1005 – 1010)
	P(Z < 1.67) =	A1		AWRT; ignore sign
	0.951 to 0.953	A1	3	AWFW; (0.95221)
(ii)	P(<i>X</i> <1000) = 1%			
	$z_{0.01} = -2.3263$	B1		AWFW 2.32 to 2.33; ignore sign
	Also, $z = \frac{1000 - \mu_X}{1000 - \mu_X}$	M1		Standardising 1000 with μ_X and 3 but
	3			allow ($\mu_X - 1000$)
	Thus $\frac{1000-\mu_X}{3} = -2.3263$	m1		Equating <i>z</i> -value to <i>z</i> -term; not using 0.01, 0.99 or $ 1-z $
	Thus $\mu_X = 1007$	A1	4	AWRT
(b)	$\overline{y} = \frac{16136}{16} = 1008.5$	B1		CAO
	95% implies $z = 1.96$	B1		CAO
	CI for μ is $\overline{y} \pm z \times \frac{\sigma}{\sqrt{n}}$	M1		Use of; must have \sqrt{n} with $n > 1$ M0 for attempt at using s
	Thus $1008.5 \pm 1.96 \times \frac{3}{\sqrt{16}}$	A1√		$$ on \overline{y} and z only
	Thus (1007, 1010)	Aldep	5	AWRT; dependent upon fully correct expression for CI
	Total		12	

(Q	Solution	Marks	Total	Comments
5	(a)	Mean, $\mu = 21 = \frac{a+b}{2}$	B1		CAO; stated or used
		Variance, $\sigma^2 = 27 = \frac{(b-a)^2}{12}$	B1		CAO; stated or used
		so			
		$((42 - a) - a)^2 = 12 \times 27 = 324$			
		or $b - a = (\pm) 18$	M1		Substitution of μ into σ^2
					or $$ of equation involving σ^2
		Thus $(42 - 2a) = (\pm)18$	M1		Solving quadratic or two simultaneous
		or $a + b = 42$ and $b - a = (\pm) 18$			equations
		Thus $a = 30 \text{ or } 12$ and $b = 12 \text{ or } 30$			
		As $a < b$ so $a = 12$ and $b = 30$	A1	5	CAO; must state $a < b$ B1 for (12, 30) $\Rightarrow \mu = 21$
					B1 for (12, 30) $\Rightarrow \sigma^2 = 27$
(1	o)(i)	P(5 < X < 20) = P(12 < X < 20) =	B1		Lower limit of 12 or 20 to 30
		$\frac{20-l}{b-a}$ or $1-\frac{30-20}{b-a}$	M1		Attempt at area of a rectangle of height $\frac{1}{b-a}$ or $\frac{1}{18}$
			A 1	2	Can be scored in (ii)
		= 8/18 or 4/9 or 0.44	Al	3	CAO/AWRI; OE
	(ii)	$P\left(X < \mu - \frac{\sigma\sqrt{3}}{2}\right) =$			
		$P\left(X < 21 - \frac{\sqrt{27} \sqrt{3}}{2}\right) =$	M1		Substitution of $\mu = 21$ and $\sigma = \sqrt{27}$; OE
		P(<i>X</i> < 16.5)	A1		CAO
		= 4.5/18 or 1/4 or 0.25	A1	3	CAO; OE
		Total		11	

Q)	Solution	Marks	Total	Comments
6	(a)	r : 0 1 2 3 4			
		P(R = r): 0.1 0.2 0.4 0.2 0.1			
		` ,			
	(i)	E(R) = 0 + 0.2 + 0.8 + 0.6 + 0.4 = 2	M1	1	AG; use of $\sum r \times p_r$ or symmetrical
	()				argument
	(ii)	$E(R^2) = 0 + 0.2 + 1.6 + 1.8 + 1.6 = 5.2$	B1		CAO; must be some evidence of use of
					$\sum r^2 \times p_r$
		$Var(R) = E(R^2) - (E(R))^2 = 1.2$			
			MI		AG; use of a formula for $Var(R)$
		= 0.4 + 0.2 + 0 + 0.2 + 0.4 = 1.2	(B1)	2	CAO > 4 terms correct
			(21)	_	
	(b)	$E(P) = 3 \times 2 + 4 = 10$	B1		CAO
		$\operatorname{Var}(P) = 3^2 \times \operatorname{Var}(R)$	M1		Use of $Var(aX + b) = a^2 Var(X)$
					with $a > 1$ and $b \ge 0$
		= 10.8	A1	3	CAO
,			M1		Use of more be implied
(C	:)(i)	C = 200 - R - P = 200 - R - (2 R + 4)	IVI I		Use of ; may be implied
		-200 - K - (5K + 4)	A 1	ſ	CAO
	(::)	Hence $C = 190 - 4K$	AI D1	L	CAO
	(11)	$E(C) = 196 - 4 \times 2 = 188$		2	
		$Var(C) = 4^2 \times Var(R) = 19.2$	втаер	2	CAO; dependent on A1 in (c)(1)
				10	
		Total		00	