

ASSESSMENT and

Mark scheme January 2004

GEE

Mathematics A

Unit MAS1

Copyright © 2004 AQA and its licensors. All rights reserved.

Key to mark scheme

M	mark is for	method
m	mark is dependent on one or more M marks and is for	method
A	mark is dependent on M or m mark and is for	accuracy
B	mark is independent of M or m marks and is for	method and accuracy
E	mark is for	explanation
\checkmark or ft or F		follow through from previous incorrect result
CAO		correct answer only
AWFW		anything which falls within
AWRT		anything which rounds to
AG		answer given
SC		special case
OE		or equivalent
A2,1		2 or 1 (or 0) accuracy marks
$-\boldsymbol{x}$ EE		Deduct x marks for each error
NMS		No method shown
PI		Perhaps implied
c		Candidate

Abbreviations used in marking

MC $-\boldsymbol{x}$	deducted x marks for miscopy
MR $-\boldsymbol{x}$	deducted x marks for misread
ISW	ignored subsequent working
BOD	gave benefit of doubt
WR	work replaced by candidate

Application of mark scheme

mark as in scheme
Incorrect answer without working zero marks unless specified otherwise

[^0]| Q | Solution | Marks | Total | Comments |
| :---: | :---: | :---: | :---: | :---: |
| 1 (a) | $\mathrm{P}(T<8)=(8-4) \times\left(\frac{0.05+0.1}{2}\right)$
 or | M1 | | Trapezium
 Worthwhile attempt at correct area, however divided |
| | $\{(8-4) \times 0.05\}+\left\{\frac{1}{2} \times(8-4) \times(0.1-0.05)\right\}$ | | | Rectangle + triangle |
| | $=0.3$ | A1 | 2 | CAO; OE |
| (b)(i) | Area under graph $=1$ | M1 | | Use of; may be implied by their area; accept $\mathrm{P}(T>8)=1-(\mathrm{a})$ must be stated clearly in reverse method |
| | $\begin{aligned} & \text { Area }=(a)+ \\ & \{(s-8) \times 0.1\}+\left\{\frac{1}{2} \times(20-s) \times 0.1\right\} \end{aligned}$
 or $\left(\frac{(20-8)+(s-8)}{2}\right) \times 0.1$ | M1 | | Worthwhile attempt at area under given graph or area above 8, however divided |
| | Hence $0.05 s=0.5$
 (implies $s=10$) | A1 | 3 | CAO; OE
 AG
 NB: In reverse method, assuming $s=10$ so triangle area $=0.5$ then showing $s=10$ given rectangle area $=0.2$, scores max of M1 M1 A0 |
| (ii) | $\mathrm{P}(T>15)=\frac{1}{2} \times(20-15) \times \mathrm{f}(15)$
 However using (b) | M1 | | Area of correct triangle or $\int_{15}^{20} y \mathrm{~d} x$ |
| |
 Thus $\mathrm{f}(15)=0.05$
 $\mathrm{P}(T>15)=0.125$ | $\begin{aligned} & \text { B1 } \\ & \text { A1 } \\ & \hline \end{aligned}$ | 3 | CAO; OE or $y=0.2-0.01 x$
 CAO; OE |
| | Total | | 8 | |

Q	Solution	Marks	Total	Comments
4(a)(i)	$\begin{aligned} & X \sim \mathrm{~N}\left(\mu_{X} 3^{2}\right) \\ & \mathrm{P}(X<1010)=\mathrm{P}\left(Z<\frac{1010-1005}{3}\right)= \\ & \mathrm{P}(Z<1.67)= \\ & 0.951 \text { to } 0.953 \end{aligned}$	M1 A1 A1	3	Standardising (1009.5, 1010 or 1010.5) with $\left(\sqrt{3}, 3\right.$ or $\left.3^{2}\right)$ and/or (1005-1010) AWRT; ignore sign AWFW; (0.95221)
(ii)	$\begin{aligned} & \mathrm{P}(X<1000)=1 \% \\ & \text { Also } \quad z_{0.01}=-2.3263 \\ & \text { Thus } \\ & \text { Thus } \\ & \frac{1000-\mu_{X}}{3}=-2.3263 \\ & \quad \mu_{X}=1007 \end{aligned}$	B1 M1 m1 A1	4	AWFW 2.32 to 2.33; ignore sign Standardising 1000 with μ_{X} and 3 but allow ($\mu_{X}-1000$) Equating z-value to z-term; not using $0.01,0.99$ or $\|1-z\|$ AWRT
(b)	$\bar{y}=\frac{16136}{16}=1008.5$ 95% implies $z=1.96$ CI for μ is Thus $1008.5 \pm 1.96 \times \frac{3}{\sqrt{16}}$ Thus (1007, 1010)	B1 B1 M1 A1 \checkmark A1dep	5	CAO CAO Use of; must have \sqrt{n} with $n>1$ M0 for attempt at using s \checkmark on \bar{y} and z only AWRT; dependent upon fully correct expression for CI
	Total		12	

Q	Solution	Marks	Total	Comments
5 (a)	Mean, $\mu=21=$ $\frac{a+b}{2}$	B1		CAO; stated or used
	Variance, $\sigma^{2}=27=\quad \frac{(b-a)^{2}}{12}$	B1		CAO; stated or used
	so $\begin{aligned} & ((42-a)-a)^{2}=12 \times 27=324 \\ & \text { or } b-a=(\pm) 18 \end{aligned}$	M1		Substitution of μ into σ^{2} or $\sqrt{ }$ of equation involving σ^{2}
	Thus $(42-2 a)=(\pm) 18$ or $a+b=42 \quad$ and $b-a=(\pm) 18$	M1		Solving quadratic or two simultaneous equations
	Thus $a=30$ or 12 and $b=12$ or 30 As $a<b$ so $a=12$ and $b=30$	A1	5	CAO; must state $a<b$ B1 for $(12,30) \Rightarrow \mu=21$ B1 for $(12,30) \Rightarrow \sigma^{2}=27$
(b)(i)	$\begin{array}{r} \mathrm{P}(5<X<20)=\mathrm{P}(12<X<20)= \\ \frac{20-l}{b-a} \text { or } 1-\frac{30-20}{b-a} \end{array}$	B1 M1		Lower limit of 12 or 20 to 30 Attempt at area of a rectangle of height $\frac{1}{b-a}$ or $\frac{1}{18}$ Can be scored in (ii)
	$=8 / 18$ or 4/9 or 0.44	A1	3	CAO/AWRT; OE
	$\mathrm{P}\left(X<\mu-\frac{\sigma \sqrt{3}}{2}\right)=$			
	$\mathrm{P}\left(X<21-\frac{\sqrt{27} \sqrt{3}}{2}\right)=$	M1		Substitution of $\mu=21$ and $\sigma=\sqrt{27}$; OE
	$\mathrm{P}(X<16.5)$	A1		CAO
	$=4.5 / 18$ or $1 / 4$ or 0.25	A1	3	CAO; OE
	Total		11	

Q	Solution	Marks	Total	Comments
6 (a)	$r: \begin{array}{llllll} \\ r\end{array}$			
	$\mathrm{P}(R=r): \begin{array}{lllll} & 0.1 & 0.2 & 0.4 & 0.2\end{array}$			
(i)	$\mathrm{E}(\mathrm{R})=0+0.2+0.8+0.6+0.4=2$	M1	1	AG; use of $\sum r \times p_{r}$ or symmetrical argument
(ii)	$\mathrm{E}\left(R^{2}\right)=0+0.2+1.6+1.8+1.6=5.2$	B1		CAO; must be some evidence of use of $\sum r^{2} \times p_{r}$
	$\operatorname{Var}(R)=\mathrm{E}\left(R^{2}\right)-(\mathrm{E}(R))^{2}=1.2$ or $=0.4+0.2+0+0.2+0.4=1.2$	M1 (B1)		AG; use of a formula for $\operatorname{Var}(R)$ CAO; ≥ 4 terms correct
	$\begin{aligned} & \text { or } \\ & =0.4+0.2+0+0.2+0.4=1.2 \end{aligned}$	(B1)	2	CAO; ≥ 4 terms correct
(b)	$\mathrm{E}(P)=3 \times 2+4=10$	B1		CAO
	$\begin{aligned} & \operatorname{Var}(P)=3^{2} \times \operatorname{Var}(R) \\ &=10.8\end{aligned}$	M1		Use of $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$ with $a>1$ and $b \geq 0$
		A1	3	CAO
(c)(i)	$\begin{aligned} C & =200-R-P \\ & =200-R-(3 R+4) \end{aligned}$			Use of ; may be implied
(ii)	Hence $\quad C=196-4 R$	A1	2	CAO
	$\mathrm{E}(C)=196-4 \times 2=188$	B1		CAO
	$\operatorname{Var}(C)=4^{2} \times \operatorname{Var}(R)=19.2$	B1dep	2	CAO; dependent on A 1 in (c)(i)
	Total		10	
	Total		60	

[^0]: Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

