GCE 2004 June Series

Mark Scheme

Mathematics A Unit MAP6

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from:
Publications Department, Aldon House, 39, Heald Grove, Rusholme, Manchester, M14 4NA Tel: 0161 953 1170
or
download from the AQA website: www.aqa.org.uk
Copyright © 2004 AQA and its licensors
COPYRIGHT AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered

within the centre.

Set and published by the Assessment and Qualifications Alliance.

charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 $6\mathrm{EX}$.

Dr Michael Cresswell Director General

Mark Scheme Advanced - Mathematics A

Key to Mark Scheme

M	mark is for method
m	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is foraccuracy
B	mark is independent of M or m marks and is formethod and accuracy
E	mark is forexplanation
	follow through from previous
	incorrect result
CAO	correct answer only
AWFW	anything which falls within
AWRT	anything which rounds to
AG	answer given
SC	special case
OE	or equivalent
A2,1	
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
SF	significant figure(s)
DP	decimal place(s)

Abbreviations used in Marking

MC - x	deducted x marks for mis-copy
	deducted x marks for mis-read
ISW	ignored subsequent working
	given benefit of doubt
	work replaced by candidate
	formulae booklet

Application of Mark Scheme

No method shown:

More than one method/choice of solution:

2 or more complete attempts, neither/none crossed out

1 complete and 1 partial attempt, neither crossed out

mark both/all fully and award the mean mark rounded down

award credit for the complete solution only

Crossed out work

do not mark unless it has not been replaced

Alternative solution using a correct or partially correct method

award method and accuracy marks as appropriate

Mathematics A – Advanced Mark Scheme

MAP6

Q	Solution	Marks	Total	Comments
1(a)	$\frac{1-4}{3} = \frac{-3+4}{-1} = \frac{2-4}{2} = -1$	В1	1	all three must be seen
	$\frac{1-5}{2} = \frac{-3+1}{1} = \frac{2-6}{2} = -2$			
(b)	$\begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix} \times \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$	M1A1		(b) Alternative:- $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix} + \lambda \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix} + \mu \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} M1$
	$= \begin{bmatrix} -4\\ -2\\ 5 \end{bmatrix}$	A1F		$x = 1 + 3 \lambda + 2 \mu$ ft miscopy $y = -3 - \lambda + \mu \text{ A1}$ $z = 2 + 2 \lambda + 2 \mu$
	$\begin{bmatrix} x \\ y \\ z \end{bmatrix} \bullet \begin{bmatrix} -4 \\ -2 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix} \bullet \begin{bmatrix} -4 \\ -2 \\ 5 \end{bmatrix}$	M1A1F		eliminate λ M1A1F eliminate μ A1F
	$\begin{bmatrix} z \end{bmatrix} \begin{bmatrix} 5 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix} \begin{bmatrix} 5 \end{bmatrix}$ Equation of plane is			result A1F
	4x + 2y - 5z + 12 = 0	A1F	6	
(c)	Perpendicular distance from $(0,0,0)$			(c) Alternative
	$=\frac{12}{\sqrt{4^2+2^2+(-5)^2}}$	M1A1F		$\overrightarrow{OP} = -\frac{4}{15} \begin{bmatrix} 4\\2\\-5 \end{bmatrix} \text{M1A1F}$
	$=\frac{4}{5}\sqrt{5}$	A1	3	$cao = \frac{4\sqrt{5}}{5} A1 cao$
	Total		10	

Mark Scheme Advanced – Mathematics A

Q	Solution	Marks	Total	Comments
2(a)	y -axis	B1	1	
(b)	$\sin \theta = \frac{1}{3}, \qquad \cos \theta = \frac{-2\sqrt{2}}{3}$	B1B1		Correct answer with $\tan \theta = -\frac{1}{2\sqrt{2}}$ scores 3 marks
	angle is $\pi - \sin^{-1} \frac{1}{3} = 2.8$	B1	3	B0 here if B0 awarded in line above cao from correct $\cos \theta$ and $\sin \theta$
				2.8 with no method B1
				3.5 as an answer could be correct but needs scrutiny
	Total		4	
3(a)	$\Delta = 2(0-2) - a(0+6) - a(-1-9)$	M1A1		M1 for correct method of expansion
	=4a-4	A1F	3	ft on one error
(b)	a = 1	B1F	1	
(c)(i)	x = t, $y = 3t$	M1A1		M1 for complete method
	z = 5t	A1F	3	If answer given as $x = \frac{1}{3}y = \frac{1}{5}z$ o.e.
				deduct 1 mark
				Alternative $ \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} B1 \lambda \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} M1A1F $
(ii)	sheaf (oe) of planes	E1	1	
	Total		8	

Mathematics A – Advanced Mark Scheme

Q	Solution	Marks	Total	Comments
4(a)	$\overrightarrow{AB} = \begin{bmatrix} 1 \\ 2 \\ -1 - p \end{bmatrix} \overrightarrow{AC} = \begin{bmatrix} 2 \\ -1 \\ 2 - p \end{bmatrix}$ $\overrightarrow{AD} = \begin{bmatrix} -1 \\ -3 \\ 4 - p \end{bmatrix}$	B2, 1, 0		
(b)	$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{bmatrix} 2(2-p) + (-1-p) \\ -(2-p) + 2(-1-p) \\ -5 \end{bmatrix}$	M1A1F		Alternative $\begin{vmatrix} -1 & -3 & 4-p \\ 1 & 2 & -1-p \\ 2 & -1 & 2-p \end{vmatrix}$ expanded M1
	$= \begin{bmatrix} 3-3p \\ -4-p \\ -5 \end{bmatrix}$ $(\overrightarrow{AB} \times \overrightarrow{AC}).\overrightarrow{AD} = \begin{bmatrix} 3-3p \\ -4-p \\ -5 \end{bmatrix} \begin{bmatrix} -1 \\ -3 \\ 4-p \end{bmatrix}$	A1F		correctly A2, 1, 0 gather terms m1 $11p-11$ A1F
(c)	= -11 + 11p $= -11 + 11p$ $ -11 + 11p = 22$	M1A1F	5	
	p=3	M1A1F		Incorrect formula M0 here
	p = -1	M1A1F	4	but allow this M1 even if formula is incorrect, and A1F also
	Total		11	

Mark Scheme Advanced – Mathematics A

Q	Solution	Marks	Total	Comments
5(a)	$\mathbf{AX} = \begin{bmatrix} 3 & 2 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} p & q \\ r & s \end{bmatrix} = \begin{bmatrix} 3p + 2r & 3q + 2s \\ 4p + r & 4q + s \end{bmatrix}$	M1A1		M1 for method of multiplying matrices
	$\mathbf{XB} = \begin{bmatrix} p & q \\ r & s \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 5p - q \\ 5r - s \end{bmatrix}$	B1	3	
(b)(i)	$\mathbf{AX} = \mathbf{XB}$ $3p + 2r = 5p$, $4p + r = 5r$ 3q + 2s = -q, $4q + s = -s$	M1A1F		2 equations are sufficient
	p = r, -2q = s	A1		cao
	$\mathbf{X} = \begin{bmatrix} p & q \\ p & -2q \end{bmatrix}$	A1F	4	
(ii)	$Det \mathbf{X} = -3pq \neq 0$	B1F		Any valid unsimplified expression $\neq 0$
	$\mathbf{X}^{-1} = -\frac{1}{3pq} \begin{bmatrix} -2q & -q \\ -p & p \end{bmatrix}$	M1		For method of finding inverse
	$3pq \lfloor -p p \rfloor$	m1		Appropriate use of determinant
		A1F	4	
(iii)	$\mathbf{X}^{-1}\mathbf{A}\mathbf{X} = \mathbf{X}^{-1}\mathbf{X}\mathbf{B} = \mathbf{I}\mathbf{B} = \mathbf{B}$	M1A1	2	or directly (i.e. from original matrices) $\mathbf{X}^{-1}\mathbf{X} = \mathbf{I}$ must be seen
(iv)	Eigenvectors $\begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \end{bmatrix}$	B1B1		OE deduct B1 once if eigenvectors and eigenvalues are not clearly corresponding
	Eigenvalues 5, – 1	B1B1	4	
	Total		17	

Mathematics A – Advanced Mark Scheme

Q Q	Solution	Marks	Total	Comments
6(a)	Any method	B1	1	Must be convincing
(b)(i)	$\overrightarrow{OM} = \frac{1}{2} \left(\mathbf{a} + 5\mathbf{b} \right)$	M1A1		M1 method for either
	$\overrightarrow{ON} = \frac{1}{2} \left(3\mathbf{a} + 3\mathbf{b} \right)$	A1	3	
(ii)	$\Delta OMN = \frac{1}{2} \left \overrightarrow{OM} \times \overrightarrow{ON} \right $			
	$=\frac{1}{8} (\mathbf{a}+5\mathbf{b})\times(3\mathbf{a}+3\mathbf{b}) $	M1		M0 if modules sign missing
	Use of $\mathbf{a} \times \mathbf{a} = 0$	B1		
	Use of $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$	B1		
	$\Delta OMN = 1.5 \mathbf{a} \times \mathbf{b} $	A1F		Must score both B1 s for this A1
	$\Delta OQR = \frac{1}{2} 3\mathbf{a} \times 5\mathbf{b} $	В1		
	$\Delta OQR = 5 \Delta OMN$	A1	6	CAO
	Total		10	
	Total		60	