

GCE

Mathematics A

Unit MAP6

Copyright © 2004 AQA and its licensors. All rights reserved.

Key to mark scheme

M	mark is for	method
m	mark is dependent on one or more M marks and is for	method
A	mark is dependent on M or m mark and is for	accuracy
B	mark is independent of M or m marks and is for	method and accuracy
E	mark is for	explanation
\checkmark or ft or F		follow through from previous incorrect result
CAO		correct answer only
AWFW		anything which falls within
AWRT		anything which rounds to
AG		answer given
SC		special case
OE		or equivalent
A2,1		2 or 1 (or 0) accuracy marks
$-\boldsymbol{x}$ EE		Deduct x marks for each error
NMS		No method shown
PI		Perhaps implied
c		Candidate

Abbreviations used in marking

MC $-\boldsymbol{x}$	deducted x marks for miscopy
MR $-\boldsymbol{x}$	deducted x marks for misread
ISW	ignored subsequent working
BOD	gave benefit of doubt
WR	work replaced by candidate

Application of mark scheme

mark as in scheme
Incorrect answer without working zero marks unless specified otherwise

[^0]| Q | Solution | Marks | Total | Comments |
| :---: | :---: | :---: | :---: | :---: |
| $1 \text { (a)(i) }$
 (ii)
 (b) | $\begin{aligned} & \mathbf{a} \times \mathbf{b}=\left[\begin{array}{c} 3 \\ 4 \\ -2 \end{array}\right] \times\left[\begin{array}{l} 2 \\ 3 \\ 0 \end{array}\right]=\left[\begin{array}{c} 6 \\ -4 \\ 1 \end{array}\right] \\ & (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}=\left[\begin{array}{r} 6 \\ -4 \\ 1 \end{array}\right] \cdot\left[\begin{array}{l} 1 \\ 2 \\ 2 \end{array}\right]=6-8+2=0 \end{aligned}$
 O, A, B and C and are coplanar | M1A1
 M1A1F
 E1 | 2
 2
 1 | no ft here |
| | Total | | 5 | |
| 2 (a)
 (b)
 (c) | $\triangle=2 \times(-2)-3(2)-2 \times(-1)=-8$
 Independent since $\triangle \neq 0$ $\begin{aligned} & 0=2 \alpha+3 \beta-2 \gamma \\ & 3=\alpha-\beta \\ & -2=-\beta+2 \gamma \end{aligned}$
 Two simultaneous equations in two unknowns
 Solution for two unknowns
 Third unknown $(\alpha=1, \beta=-2, \gamma=-2)$ | M1A1
 E1
 M1A1
 M1
 A1FA1F
 A1F | 2
 6 | |
| | Total | | 9 | |

Q	Solution	Marks	Total	Comments
$3 \text { (a) }$	\mathbf{M}_{1} is a rotation of $-\frac{\pi}{2}$ about y-axis	B1B1	2	$\text { Accept }-\frac{\pi}{2}, 90^{\circ}$
(b)(i)	$\begin{aligned} & (1,0,0) \rightarrow(0,0,1) \\ & (0,1,0) \rightarrow(0,-1,0) \\ & (0,0,1) \rightarrow(1,0,0) \end{aligned}$	B2,1,0	2	
(ii)	Matrix $\mathbf{M}_{2}=\left[\begin{array}{rrr}0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0\end{array}\right]$	M1A1F	2	
(c)(i)	$\left[\begin{array}{rrr} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array}\right]\left[\begin{array}{rrr} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{array}\right]=\left[\begin{array}{rrr} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{array}\right]$	M1A1	2	AG M1 for getting the order of the matrices correct
(ii)	Rotation of π about the z-axis	B1B1	2	Accept 180°
	Total		10	
4 (a) (b) (c)	$1+2-2=1, \quad 1+3+2=6$	B1		
	$\left[\begin{array}{r} 1 \\ 2 \\ -1 \end{array}\right] \times\left[\begin{array}{l} 1 \\ 3 \\ 1 \end{array}\right]$	M1A1	1	Alternative method for 4(b) Elimination of one letter e.g. $\begin{array}{r}y=-2 z+5 \\ \text { M1A1 }\end{array}$
	$=\left[\begin{array}{r} 5 \\ -2 \\ 1 \end{array}\right]$	A1F		Elimination of second letter e.g. $y=\frac{7-2 x}{5}$
	Equation of line is			Combining the results $-2 z+5=y=\frac{7-2 x}{5}$
	$\frac{x-1}{5}=\frac{y-1}{-2}=\frac{z-2}{1}$	M1A1F	5	Rearranging $\frac{z-5 / 2}{1}=\frac{y}{-2}=\frac{x-7 / 2}{5} \quad \mathrm{~A} 1$
	$\cos \theta=\frac{ \pm(0,1,0) \cdot(5,-2,1)}{\sqrt{5^{2}+(-2)^{2}+1^{2}}}$	M1A1F		$\mathrm{ft} \mathrm{incorrect} \mathrm{(} 5,-2,1)$
	$\theta=68.6^{\circ}$	A1F	3	
	Total		9	

[^0]: Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

