

### Mark scheme January 2004

# GCE

## **Mathematics** A

### **Unit MAP6**

Copyright © 2004 AQA and its licensors. All rights reserved.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723/MAAA/gtheellpape/SLCOM

#### AQA

#### Key to mark scheme

| Μ                       | mark is for                                         | method                               |
|-------------------------|-----------------------------------------------------|--------------------------------------|
| m                       | mark is dependent on one or more M marks and is for | method                               |
| Α                       | mark is dependent on M or m mark and is for         | accuracy                             |
| В                       | mark is independent of M or m marks and is for      | method and accuracy                  |
| Ε                       | mark is for                                         | explanation                          |
| $\checkmark$ or ft or F |                                                     | follow through from previous         |
|                         |                                                     | incorrect result                     |
| CAO                     |                                                     | correct answer only                  |
| AWFW                    |                                                     | anything which falls within          |
| AWRT                    |                                                     | anything which rounds to             |
| AG                      |                                                     | answer given                         |
| SC                      |                                                     | special case                         |
| OE                      |                                                     | or equivalent                        |
| A2,1                    |                                                     | 2 or 1 (or 0) accuracy marks         |
| -x EE                   |                                                     | Deduct <i>x</i> marks for each error |
| NMS                     |                                                     | No method shown                      |
| PI                      |                                                     | Perhaps implied                      |
| c                       |                                                     | Candidate                            |

#### Abbreviations used in marking

| MC - x | deducted x marks for miscopy |
|--------|------------------------------|
| MR - x | deducted x marks for misread |
| ISW    | ignored subsequent working   |
| BOD    | gave benefit of doubt        |
| WR     | work replaced by candidate   |

#### Application of mark scheme

| Correct answer without working   | mark as in scheme                     |  |  |
|----------------------------------|---------------------------------------|--|--|
| Incorrect answer without working | zero marks unless specified otherwise |  |  |

Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

| Q        | Solution                                                                                                                                                       | Marks  | Total | Comments   |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|------------|
| 1 (a)(i) | $\mathbf{a} \times \mathbf{b} = \begin{bmatrix} 3\\4\\-2 \end{bmatrix} \times \begin{bmatrix} 2\\3\\0 \end{bmatrix} = \begin{bmatrix} 6\\-4\\1 \end{bmatrix}$  | M1A1   | 2     |            |
| (ii)     | $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = \begin{bmatrix} 6 \\ -4 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} = 6 - 8 + 2 = 0$ | M1A1F  | 2     |            |
| (b)      | O, A, B and $C$ and are coplanar                                                                                                                               | E1     | 1     | no ft here |
|          | Total                                                                                                                                                          |        | 5     |            |
| 2 (a)    |                                                                                                                                                                | M1A1   | 2     |            |
| (b)      | Independent since $\Delta \neq 0$                                                                                                                              | E1     | 1     |            |
| (c)      | $0 = 2\alpha + 3\beta - 2\gamma$                                                                                                                               |        |       |            |
|          | $3 = \alpha - \beta$                                                                                                                                           | M1A1   |       |            |
|          | $-2 = -\beta + 2\gamma$                                                                                                                                        |        |       |            |
|          | Two simultaneous equations in two unknowns                                                                                                                     | M1     |       |            |
|          | Solution for two unknowns                                                                                                                                      | A1FA1F |       |            |
|          | Third unknown                                                                                                                                                  | A1F    | 6     |            |
|          | $(\alpha = 1, \beta = -2, \gamma = -2)$                                                                                                                        |        |       |            |
|          | Total                                                                                                                                                          |        | 9     |            |

| Q      | Solution                                                                                                                                                                                                      | Marks  | Total | Comments                                                                                                                                                         |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 (a)  | $\mathbf{M}_1$ is a rotation of $-\frac{\pi}{2}$ about <i>y</i> -axis                                                                                                                                         | B1B1   | 2     | Accept $-\frac{\pi}{2}$ , 90°                                                                                                                                    |
| (b)(i) | $(1, 0, 0) \to (0, 0, 1) (0, 1, 0) \to (0, -1, 0) (0, 0, 1) \to (1, 0, 0)$                                                                                                                                    | B2,1,0 | 2     |                                                                                                                                                                  |
| (ii)   | Matrix $\mathbf{M}_2 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$                                                                                                                    | M1A1F  | 2     |                                                                                                                                                                  |
| (c)(i) | $\begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ | M1A1   | 2     | AG M1 for getting the order of the matrices correct                                                                                                              |
| (ii)   | Rotation of $\pi$ about the <i>z</i> -axis                                                                                                                                                                    | B1B1   | 2     | Accept 180°                                                                                                                                                      |
|        | Total                                                                                                                                                                                                         |        | 10    |                                                                                                                                                                  |
| 4 (a)  | 1+2-2=1, $1+3+2=6$                                                                                                                                                                                            | B1     | 1     |                                                                                                                                                                  |
| (b)    | $\begin{bmatrix} 1\\2\\-1 \end{bmatrix} \times \begin{bmatrix} 1\\3\\1 \end{bmatrix}$                                                                                                                         | M1A1   |       | Alternative method for 4(b)<br>Elimination of one letter e.g. $y = -2z+5$<br>M1A1                                                                                |
|        | $=\begin{bmatrix}5\\-2\\1\end{bmatrix}$                                                                                                                                                                       | A1F    |       | Elimination of second letter<br>e.g. $y = \frac{7-2x}{5}$ A1                                                                                                     |
|        | Equation of line is<br>$\frac{x-1}{5} = \frac{y-1}{-2} = \frac{z-2}{1}$                                                                                                                                       | M1A1F  | 5     | Combining the results<br>$-2z + 5 = y = \frac{7 - 2x}{5} \qquad M1$ Rearranging $\frac{z - \frac{5}{2}}{1} = \frac{y}{-2} = \frac{x - \frac{7}{2}}{5} \qquad A1$ |
| (c)    | $\cos \theta = \frac{\pm (0,1,0) \cdot (5,-2,1)}{\sqrt{5^2 + (-2)^2 + 1^2}}$                                                                                                                                  | M1A1F  |       | ft incorrect $(5, -2, 1)$                                                                                                                                        |
|        | $\theta = 68.6^{\circ}$                                                                                                                                                                                       | A1F    | 3     |                                                                                                                                                                  |
|        | Total                                                                                                                                                                                                         |        | 9     |                                                                                                                                                                  |

| Q      | Solution                                                                                                                                                                                   | Marks        | Total | Comments                                                                                                     |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------|--------------------------------------------------------------------------------------------------------------|
|        | $\mathbf{AB} = \begin{bmatrix} 3 & -1 & p \\ 0 & -5 & p \end{bmatrix} \begin{bmatrix} p & -1 \\ -2 & 0 \\ -3 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 3p - 3 \\ 10 - 3p & 3p \end{bmatrix}$ | M1<br>A2,1,0 | 3     | The order of the matrices must be correct<br>for M1<br>Allow the M1 for two correctly positioned<br>elements |
| (b)(i) | det $AB = 6p + (3p - 10)(3p - 3)$                                                                                                                                                          | M1A1F        |       |                                                                                                              |
|        | $=3 (3p^2 - 11p + 10)$                                                                                                                                                                     | A1F          |       | or $9p^2 - 33p + 30 = 0$                                                                                     |
|        | =3(3p-5)(p-2)                                                                                                                                                                              |              |       |                                                                                                              |
|        | $= 0$ when $p = \frac{5}{3}$ or 2                                                                                                                                                          | A1           | 4     | ft if factorises                                                                                             |
| (ii)   | $p = \frac{5}{3}  \mathbf{AB} = \begin{bmatrix} 2 & 2\\ 5 & 5 \end{bmatrix}  \mathbf{B}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} = \begin{bmatrix} 2 & 5\\ 2 & 5 \end{bmatrix}$                | M1A1F        |       | M1 for either $p = 5$ or $p = 2$                                                                             |
|        | $p = 2  \mathbf{AB} = \begin{bmatrix} 2 & 3 \\ 4 & 6 \end{bmatrix}  \mathbf{B}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} = \begin{bmatrix} 2 & 4 \\ 3 & 6 \end{bmatrix}$                        | A1F          | 3     |                                                                                                              |
| (iii)  | det $\mathbf{AB} = 0$                                                                                                                                                                      | E1           | 1     |                                                                                                              |
|        | Total                                                                                                                                                                                      |              | 11    |                                                                                                              |

| Q      | Solution                                                                                                                                                                        | Marks     | Total    | Comments                                                                       |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|--------------------------------------------------------------------------------|
| 6 (a)  |                                                                                                                                                                                 |           |          |                                                                                |
|        | $\begin{vmatrix} 0 & 1 & 2 \end{vmatrix} = 0$                                                                                                                                   | M1A1      |          |                                                                                |
|        | $\begin{vmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \end{vmatrix} = 0$                                                                                                                      |           |          |                                                                                |
|        |                                                                                                                                                                                 |           |          |                                                                                |
|        | $\begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$                       |           |          |                                                                                |
|        | $\begin{vmatrix} 0 & 1 & 2 \\ 0 & \end{vmatrix}   y = \begin{vmatrix} 0 \\ 0 \end{vmatrix}$                                                                                     |           |          |                                                                                |
|        | $\begin{bmatrix} 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} z \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}$                                                                       |           |          |                                                                                |
|        |                                                                                                                                                                                 | N / 1 A 1 |          |                                                                                |
|        | $\therefore 3x = 0$                                                                                                                                                             | M1A1      |          |                                                                                |
|        | y + 2z = 0                                                                                                                                                                      |           |          |                                                                                |
|        | eigenvector is $\begin{bmatrix} 0\\ -2\\ 1 \end{bmatrix}$                                                                                                                       |           | ~        |                                                                                |
|        |                                                                                                                                                                                 | A1F       | 5        | OE                                                                             |
|        | [ <sup>1</sup> ]                                                                                                                                                                |           |          |                                                                                |
| (b)(i) | $\begin{vmatrix} 4-\lambda & 0 & 0 \end{vmatrix}$                                                                                                                               |           |          |                                                                                |
|        | $\begin{vmatrix} 4-\lambda & 0 & 0 \\ 0 & 2-\lambda & 2 \\ 0 & 1 & 3-\lambda \end{vmatrix}$                                                                                     |           |          |                                                                                |
|        | $0 \qquad 1 \qquad 3-\lambda$                                                                                                                                                   |           |          |                                                                                |
|        |                                                                                                                                                                                 | M1A1      |          | Allow whenever this line appears                                               |
|        | $= (4 - \lambda)((2 - \lambda)(3 - \lambda) - 2)$                                                                                                                               | A1F       |          | Provided quadratic factorises                                                  |
|        | $= (4 - \lambda)(\lambda - 4)(\lambda - 1)$                                                                                                                                     | Al        | 4        |                                                                                |
|        | $\lambda = 4$                                                                                                                                                                   | AI        | 4        |                                                                                |
| (ii)   | $\begin{bmatrix} 0 & 0 & 0 \\ 0 & -2 & 2 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ -2y + 2z \\ y - z \end{bmatrix}$          |           |          | [ ]                                                                            |
|        | $\begin{vmatrix} 0 & -2 & 2 \end{vmatrix} \begin{vmatrix} y \end{vmatrix} = \begin{vmatrix} -2y + 2z \end{vmatrix}$                                                             | M1        |          | $A$ ccent $\begin{bmatrix} p \\ a \end{bmatrix}$ substituted in and verified   |
|        | $\begin{bmatrix} 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} z \end{bmatrix} \begin{bmatrix} y-z \end{bmatrix}$                                                                    | 1011      |          | Accept $\begin{bmatrix} p \\ q \\ q \end{bmatrix}$ substituted in and verified |
|        |                                                                                                                                                                                 |           |          |                                                                                |
|        | y = z, x any value                                                                                                                                                              | Al        |          |                                                                                |
|        |                                                                                                                                                                                 |           |          |                                                                                |
|        | eigenvector $\begin{bmatrix} p \\ q \end{bmatrix}$                                                                                                                              | A 1       | 2        |                                                                                |
|        | $\left\lfloor q  ight floor$                                                                                                                                                    | A1        | 3        | AG                                                                             |
|        |                                                                                                                                                                                 |           |          |                                                                                |
| (c)(i) | $x = 0, y = -2z \begin{bmatrix} 4 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 1 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ -2t \\ t \end{bmatrix} = \begin{bmatrix} 0 \\ -2t \\ t \end{bmatrix}$    |           |          |                                                                                |
|        | $x = 0, y = -2z \mid 0  2  2 \mid \mid -2t \mid = \mid -2t \mid$                                                                                                                |           |          |                                                                                |
|        | $\begin{bmatrix} 0 & 1 & 3 \end{bmatrix} \begin{bmatrix} t & \end{bmatrix} \begin{bmatrix} t & \end{bmatrix}$                                                                   |           |          |                                                                                |
|        | ∴ point invariant                                                                                                                                                               | M1A1      | 2        |                                                                                |
| (ii)   | $x = 0, y = z \qquad \begin{bmatrix} 4 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 1 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ t \\ t \end{bmatrix} = 4 \begin{bmatrix} 0 \\ t \\ t \end{bmatrix}$ |           |          |                                                                                |
|        | $x = 0, y = z \qquad \begin{vmatrix} 0 & 2 & 2 \end{vmatrix} \begin{vmatrix} t \end{vmatrix} = 4 \begin{vmatrix} t \end{vmatrix}$                                               |           |          |                                                                                |
|        | $\begin{bmatrix} 0 & 1 & 3 \end{bmatrix} \begin{bmatrix} t \end{bmatrix}$ $\begin{bmatrix} t \end{bmatrix}$                                                                     |           |          |                                                                                |
|        | ∴ invariant line                                                                                                                                                                | M1A1      | 2        |                                                                                |
|        | Total<br>Total                                                                                                                                                                  |           | 16<br>60 |                                                                                |
|        | I Otal                                                                                                                                                                          |           | 00       |                                                                                |

#### www.theallpapers.com