GCE 2004 June Series

ASSESSMENT and
OUALIFICATIONS
ALLIANCE

Mark Scheme

Mathematics A Unit MAP5

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from:

Publications Department, Aldon House, 39, Heald Grove, Rusholme, Manchester, M14 4NA Tel: 01619531170
or
download from the AQA website: www.aqa.org.uk

Copyright © 2004 AQA and its licensors

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX.

Key to Mark Scheme

Abbreviations used in Marking

MC - x
deducted x marks for mis-copy
MR - x. deducted x marks for mis-read
ISW ignored subsequent working
BOD given benefit of doubt
WR.
work replaced by candidate
FB formulae booklet

Application of Mark Scheme

No method shown:

More than one method/choice of solution:

2 or more complete attempts, neither/none crossed out
1 complete and 1 partial attempt, neither crossed out
Crossed out work
Alternative solution using a correct or partially correct method
mark both/all fully and award the mean mark rounded down
award credit for the complete solution only
do not mark unless it has not been replaced
award method and accuracy marks as appropriate

MAP5

Q	Solution	Marks	Total	Comments
1(a)	$\frac{4}{x(x+4)}=\frac{1}{x}-\frac{1}{x+4}$	M1A1		Whole Q depends on the PFs
	$\mathrm{I}=\ln x-\ln (x+4)(+c)$	A1F	3	ft incorrect PFs
(b)(i)	$\mathrm{I}=[\ln x-\ln (x+4)]_{0}^{1}$	B1		attempt to put in limits
	$\ln x \rightarrow-\infty$ as $x \rightarrow 0 \therefore$ no finite limit	E1	2	
(ii)	$\frac{x}{x+4} \rightarrow 1 \text { as } x \rightarrow \infty$	E1		a clear explanation is required
	$\therefore \mathrm{I}=\ln 1-\ln \frac{1}{5}$	M1		substitution of limits
	$=\ln 5$	A1F	3	O.E; no $\ln 1$ in answer
	Total		8	
2	$\cos ^{k} x=\left(1-\frac{x^{2}}{2} \ldots\right)^{k}$	M1		
	$=1-\frac{k x^{2}}{2} . .$	A1		ignore higher powers of x
	$\lim _{x \rightarrow 0} \frac{1-\left(1-\frac{k x^{2}}{2}\right)}{x^{2}}=4$	M1		award only if some function of k appears
	$k=8$	A1F	4	
	Total		4	

MAP5 (Cont)

Q	Solution	Marks	Total	Comments
3(a)	$y_{1}=1+h(1+1-3)$	M1		
	$=1-h$	A1	2	
(b)(i)	$x_{1}=1+h$	B1		
	$y_{2}=1+2 h\left((1+h)^{2}+(1-h)^{2}-3\right)$	M1A1F		M0 if x_{1} used throughout M1 if some function of h is used (including 1)
	$=1-2 h+4 h^{3}$	A1	4	AG
(ii)	$h=0.05$	B1		B0 if $h=0.1$
	$\begin{aligned} y(1.1)=y_{2}=1 & -2 \times 0.05+4 \times 0.05^{3} \\ & =0.9005 \end{aligned}$		2	Would have to accept to 3 sig fig ft $h=0.1$ (giving 0.804)
	Total		8	
4	$\begin{gathered} 2=r+r \cos \theta \\ =r+x \\ 2-x=r \end{gathered}$	$\begin{gathered} \hline \text { M1 } \\ \text { B1 } \\ \text { A1 } \end{gathered}$		i.e. $x=r \cos \theta$ used relevantly
	$(2-x)^{2}=x^{2}+y^{2}$	M1		For relevant use of $r=\sqrt{x^{2}+y^{2}}$
	$4-4 x+x^{2}=x^{2}+y^{2}$	A1		
	$y^{2}=4(1-x)$	A1F	6	Or $y^{2}=4-4 x$ o.e. ft simple arithmetical errors only
	Total		6	

MAP5 (Cont)

Q	Solution	Marks	Total	Comments
5(a)	$\begin{aligned} \mathrm{IF}=\mathrm{e}^{-\int \frac{1}{x+1} \mathrm{~d} x} & =\mathrm{e}^{-\ln (x+1)} \\ & =\frac{1}{x+1} \end{aligned}$	M1A1 A1	3	
(b)	$\begin{aligned} \frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x+1}\right) & =\frac{x^{2}}{x+1} \\ & =\frac{1}{x+1}+x-1 \end{aligned}$	M1A1 M1A1F		
	$\frac{y}{x+1}=\frac{x^{2}}{2}-x+\ln (x+1)+c$	A1F		Allow if c missing
				Or by substituting $u=x+1$ in this case $\int\left(u-2+\frac{1}{u}\right) \mathrm{d} u \quad$ M1A1
	$c=2$	A1F	6	$\frac{(x+1)^{2}}{2}-2(x+1)+h(x+1)+c \quad \mathrm{~A} 1$
	$y=(x+1)\left(\frac{x^{2}}{2}-x+\ln (x+1)+2\right)$			$c=3.5 \quad \mathrm{~A} 1$
(c)	$\begin{aligned} & \lim _{x \rightarrow-1} y=0 \text { since }(x+1) \ln (x+1) \rightarrow 0 \\ & \text { as } x \rightarrow-1 \end{aligned}$	E1	1	Must have proper explanation.
	Total		10	
6(a)	$R_{1}+R_{2}=\frac{1}{2} \int_{-(\pi-\alpha)}^{\alpha} 4(1-\cos \theta)^{2} \mathrm{~d} \theta$	M1A1		M1 for use of formula A1 for correct limits (appearing at any point)
	$(1-\cos \theta)^{2}=1-2 \cos \theta+\cos ^{2} \theta$	A1		
	$\cos ^{2} \theta=\frac{1+\cos 2 \theta}{2}$ used	M1		
	$\mathrm{I}=\left[3 \theta-4 \sin \theta+\frac{\sin 2 \theta}{2}\right]$	A1F		
	$a=3, b=-8$	A1A1	7	CAO
(b)	$O A=2(1-\cos \alpha)$	B1		
	$O B=2(1-\cos (-\pi+\alpha))$	B1		Could use $\pi+\alpha$
	$A B=4$	B1	3	
	Total		10	

MAP5 (Cont)

