

Mark scheme January 2004

GCE

Mathematics A

Unit MAP2

Copyright © 2004 AQA and its licensors. All rights reserved.

GCE: Mathematics A – MAP2

Key to mark scheme

M	mark is for	method
m	mark is dependent on one or more M marks and is for	method
A	mark is dependent on M or m mark and is for	accuracy
В	mark is independent of M or m marks and is for	method and accuracy
E	mark is for	explanation
or ft or F		follow through from previous
		incorrect result
CAO		correct answer only
AWFW		anything which falls within
AWRT		anything which rounds to
AG		answer given
SC		special case
OE		or equivalent
A2,1		2 or 1 (or 0) accuracy marks
-x EE		Deduct x marks for each error
NMS		No method shown
PI		Perhaps implied
c		Candidate

Abbreviations used in marking

MC-x	deducted x marks for miscopy
MR-x	deducted x marks for misread
ISW	ignored subsequent working
BOD	gave benefit of doubt
WR	work replaced by candidate

Application of mark scheme

Correct answer without working	mark as in scheme
Incorrect answer without working	zero marks unless specified otherwise

Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

Q	Solution	Marks	Total	Comments
1 (a)(i)		B1		
(ii)	$\alpha + \beta = 3$	B1	2	
(b)(i)	$\frac{1}{\alpha} \times \frac{1}{\beta} = \frac{1}{\alpha\beta} = 2$	B1√	1	
(ii)	$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta} = 6$	M1A1√	2	
(c)	$x^{2} - (sum)x + (product) = 0$ $x^{2} - 6x + 2 = 0$	M1 A1√	2	Replace x by $\frac{1}{x}$ $2\left(\frac{1}{x}\right)^2 - 6\left(\frac{1}{x}\right) + 1 = 0$ $\frac{2}{x^2} - \frac{6}{x} + 1 = 0 \times \text{by } x^2 \text{ to give}$ $x^2 - 6x + 2 = 0$
	Total		7	

Q	Solution	Marks	Total	Comments
2 (a)(i)	Centre $(2, -2)$	B1		
(ii)	Complete the square	M1		Attempted
(11)	$(x-2)^2 + (y+2)^2 = 20$	A1		LHS correct
		A1		RHS correct
	$\therefore r^2 = 20$			
	$r = \sqrt{20} \qquad \text{or (AWRT 4.47)}$	A 1√	5	(on their RHS > 0)
(b)	Crosses x-axis when $y = 0$	M1		For use of $y = 0$
	$\therefore x^2 - 4x - 12 = 0$	m1		For solving quadratic by any correct
	(x-6)(x+2)=0	1111		method attempted
	x = 6 or x = -2			memod untempted
	\therefore crosses x-axis at the points			
	(6,0) & (-2,0)	A1	3	Accept $x = 6$ and $x = -2$
				if $y = 0$ used
	22 4			
(c)	Slope of radius = $\frac{22}{4 - 2} = \frac{4}{2} = 2$	B1√		On their centre
	. 2 2			
	Use $m_1 m_2 = -1$ for perpendicular lines			
	\therefore slope of tangent = $-\frac{1}{2}$	B1√		On their slope of radius
	$\frac{1}{2}$	DIV.		On their slope of radius
	Equation of tangent is			1 14
	1	3.61		If $m_1 m_2 = -1$ used then:
	$y-2=-\frac{1}{2}(x-4)$	M1		use of $y - y_1 = m(x - x_1)$
	2			or any other correct method
	2y - 4 = -x + 4	A 1√		1.5 1.5
	x + 2y - 8 = 0	Al√	4	Accept any simplified form (on their value of m)
	T-4-1		12	(on their value of in)
	Total		12	

Q	Solution	Marks	Total	Comments
3 (a)	$\beta = \tan^{-1}(2.4) = 1.176^{\circ}$	B1	1	
	,			
(In)				
(b)	$10\sin\theta + 24\cos\theta \equiv R\sin(\theta + \alpha)$			
	$= R\sin\theta\cos\alpha + R\cos\theta\sin\alpha$			
	$R\sin\alpha = 24$			
	$R\cos\alpha = 10$			
		M1		Any correct attempt at finding R or α
	$\tan \alpha = 2.4$ $\therefore \alpha = 1.176^{\circ}$	A1		Compat of (AWDT 1.19)
	$R^2 = 24^2 + 10^2 = 676 \qquad R = 26$			Correct α (AWRT 1.18)
	R = 24 + 10 = 6/6 $R = 26$	A1		Correct R
	$\Rightarrow 26\sin(\theta + 1.176)$		3	
(c)(i)	Maximum value = 26	B1√	1	On their answer to part (b)
				(± 26 gets B0)
(ii)	$\sin(\theta+1.176)=1$	M1		(based on a valid method used in (b))
	$\therefore \theta + 1.176 = \frac{\pi}{2}$			
	$\theta = 0.395^{\circ}$	A1√	2	On their value of α
				(6.68, 13.0,)
	Total		7	

	Q	Solution	Marks	Total	Comments
4	(a)	$y = \ln(x^2 + 9)$			
		let $u = x^2 + 9$ then $\frac{du}{dx} = 2x$			
		and $y = \ln u$: $\frac{\mathrm{d}y}{\mathrm{d}u} = \frac{1}{u} = \frac{1}{x^2 + 9}$	M1		
		$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \times \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{x^2 + 9} \times 2x$	M1		Use of chain rule
		$=\frac{2x}{x^2+9}$	A1	3	CAO
	(b)	$\int_{0}^{3} \frac{x}{x^2 + 9} dx = \left[\frac{1}{2} \ln(x^2 + 9) \right]_{0}^{3}$	M1		
		$=\frac{1}{2}\ln 18 - \frac{1}{2}\ln 9$	A1		
		$=\frac{1}{2}\ln 2$	A1	3	AG
	(c)	$\int_{0}^{3} \frac{x+1}{x^{2}+9} dx = \int_{0}^{3} \frac{x}{x^{2}+9} dx + \int_{0}^{3} \frac{1}{x^{2}+9} dx$	M1		Attempted
		$= \frac{1}{2} \ln 2 + \frac{1}{3} \left[\tan^{-1} \left(\frac{x}{3} \right) \right]_0^3$	A1		
		$==\frac{1}{2}\ln 2 + \frac{1}{3}\left[\tan^{-1}(-1) - \tan^{-1}(0)\right]$	M1		Limits used in correct expression
		$= \frac{1}{2}\ln 2 + \frac{\pi}{12}$	A1	4	AG
		Total		10	

Q	Solution	Marks	Total	Comments
5 (a)	$y = x \ln x$			
	y(1) = 0			
	y(1.5) = 0.60820			
	y(2) = 1.38629 y(2.5) = 2.29073			P1 for any two correct
	y(3) = 3.29584	B2		B1 for any two correct B2 for all correct
				B2 for all correct
	Area = $\frac{1}{2} \times \frac{1}{2} \times (0 + 3.2958 + 2[4.2852])$	M1		
	2 2	1411		
	= 2.97	A1	4	2.96657
	2.71	AI	_	2.90037
(b)(i)	$2r^2 \times \frac{1}{2} + (\ln r) \times 4r - 2r$			
(~)(-)	$2x^{2} \times \frac{1}{x} + (\ln x) \times 4x - 2x$ $= 4x \ln x$	M1A1		Product rule attempted
	$=4x \ln x$	A1	3	
(::)	3			
(ii)	$\int_{1}^{3} x \ln x dx = \frac{1}{4} \left[2x^{2} \ln x - x^{2} \right]_{1}^{3}$	M1		
	1 4 1			
	$= \frac{1}{4} (\{18 \ln 3 - 9\} - \{-1\})$	M1		
	4			
	1, , ,	A1	3	(2.943755)
	$=\frac{1}{4}(18 \ln 3 - 8)$	Al	3	
	·			
	(= 2.94)			
	Total		10	

Q	Solution	Marks	Total	Comments
	f(1) = 0.341			
	f(2) = -0.091	M1		
	Change of sign \Rightarrow			
	\therefore root in the interval $1 \le x \le 2$	A1	2	
(b)(i)	$f'(x) = \cos x - \frac{1}{2}$	B1	1	
	<u> </u>			
(ii)	$x_{n+1} = x_n - \frac{f(x)}{f'(x_n)} = x_n - \frac{\sin x_n - \frac{1}{2}x_n}{\cos x_n - \frac{1}{2}}$	M1		N. D. Commula wood
	$x_{n+1} = x_n - \frac{1(x)}{c'(x)} = x_n - \frac{2}{x_n}$	IVI I		N-R formula used
	$\cos x_n - \frac{1}{2}$			
	2			
	$\sin 2 - 1$	m1		Radians used in correct formula
	$x_0 = 2$ \therefore $x_1 = 2 - \frac{\sin 2 - 1}{\cos 2 - \frac{1}{-}}$	1111		Radians used in correct formula
	2			
	w =1 001 - 1 0	A1	3	AG
	$x_1 = 1.901 \approx 1.9$			
(c)(i)	$\sin^2 x = \frac{1}{2}(1-\cos 2x)$			
	2 (1 20523)			
	1 .	M1		
	$\therefore \int \sin^2 x dx = \frac{1}{2} \int (1 - \cos 2x) dx$	1411		
	2			
	$=\frac{1}{2}x - \frac{1}{4}\sin 2x + c$	A 1	2	AG
	$-\frac{2}{2}x - \frac{3}{4}\sin 2x + c$			
(ii)	1.9			
(ii)	$\int_{0}^{1.9} \sin^2 x = \left[\frac{1}{2} x - \frac{1}{4} \sin 2x \right]_{0}^{1.9} = 1.10$	B1	1	
	$\begin{bmatrix} 2 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 2 \\ 4 \end{bmatrix}$			
(d)	Volume of solid formers I V V	M1		
	Volume of solid formed = $V_1 - V_2$			
	1.90	M1		for V_1 (3.46507) allow 3.46 (1.10× π)
	$V_1 = \pi \int \sin^2 x dx$			(110,40)
	$= \pi \times 1.10$			
	- <i>n</i> ∧1.10			
	(=3.47)			
	$\frac{1}{2}$	M1		for V_2
	$V_2 = \frac{1}{3} \times \pi \times (0.95)^2 \times 1.90 \text{ or } \pi \int_0^{1.9} \left(\frac{1}{2}x\right)^2 dx$			_
	(= 1.796)			
		A1		(1.66938) allow 1.66
	\therefore Volume of solid formed = 1.67			(1.00/30) anow 1.00
	Volume = 1.7 (2sf)	A1	5	
	Total		14	
	Total		60	