

GCE

Mathematics A

Unit MAP1

Copyright © 2004 AQA and its licensors. All rights reserved.

Key to mark scheme

M	mark is for	method
m	mark is dependent on one or more M marks and is for	method
A	mark is dependent on M or m mark and is for	accuracy
B	mark is independent of M or m marks and is for	method and accuracy
E	mark is for	explanation
\checkmark or ft or F		follow through from previous incorrect result
CAO		correct answer only
AWFW		anything which falls within
AWRT		anything which rounds to
AG		answer given
SC		special case
OE		or equivalent
A2,1		2 or 1 (or 0) accuracy marks
$-\boldsymbol{x}$ EE		Deduct x marks for each error
NMS		No method shown
PI		Perhaps implied
c		Candidate

Abbreviations used in marking

MC $-\boldsymbol{x}$	deducted x marks for miscopy
MR $-\boldsymbol{x}$	deducted x marks for misread
ISW	ignored subsequent working
BOD	gave benefit of doubt
WR	work replaced by candidate

Application of mark scheme

mark as in scheme
Incorrect answer without working zero marks unless specified otherwise

[^0]| Q | Solution | Marks | Total | Comments |
| :---: | :---: | :---: | :---: | :---: |
| 1 (a)
 (b) | $\int x^{\frac{1}{2}} \mathrm{~d} x=\frac{x^{\frac{3}{2}}}{\frac{3}{2}}(+c)$
 Substitution of $x=2$ $\begin{aligned} & \int_{0}^{2} x^{\frac{1}{2}} \mathrm{~d} x=\frac{2}{3}\left(2^{\frac{3}{2}}\right) \\ & \ldots=\frac{4}{3} \sqrt{2} \end{aligned}$ | M1A1
 ml
 A1F
 A1F | 3 | M1 for the correct power of x
 ft wrong coeff of $x^{\frac{3}{2}}$; decimals not allowed ditto |
| | Total | | 5 | |
| 2 (a)
 (b)
 (c) | $u_{1}=6, u_{2}=18$
 Common ratio is 3
 Formula for sum of GP stated $\begin{aligned} & S_{10}=\frac{6\left(3^{10}-1\right)}{3-1} \\ & \ldots=3\left(3^{10}-1\right) \end{aligned}$ | B1B1
 B1
 M1
 m1
 A1 | 2
 1
 3 | Allow 1/2 for answers 2, 6
 Condone 1:3
 or used
 Allow with one numerical error
 Convincingly shown (AG) |
| | Total | | 6 | |
| 3 (a)
 (b)(i)
 (ii) | Sector area formula stated Sector area $=12.5 \theta\left(\mathrm{~cm}^{2}\right)$
 Equating sector area to 6.25 $\theta=0.5$
 Arc length formula stated
 Perimeter $=22.5(\mathrm{~cm})$ | M1
 A1
 M1
 A1
 M1
 A1F | 2
 2 | or used
 Condone omission of units throughout
 or used
 ft wrong value of θ |
| | Total | | 6 | |
| $4(a)(i)$
 (ii)
 (b) | Terms 102, 104
 Formula for nth term stated $100+2(n-1)=200$
 No of terms $=51$
 Formula for sum of AP stated
 Total length $=\frac{51}{2}(100+200)$ $\ldots=7650(\mathrm{~mm})$ | B1B1
 M1
 m1
 A1
 M1
 MI
 A1 | 2
 3
 3 | or used
 OE; allow with one numerical error
 Allow NMS; allow $2 / 3$ for answer 50 or used
 OE; allow with one numerical error
 SC allow $3 / 3$ for correct answer obtained by adding all 51 numbers but NMS $1 / 3$ |
| | Total | | 8 | |

Q	Solution	Marks	Total	Comments
5 (a) (b) (c) (d) (e)	$\begin{aligned} & y^{\prime}=2 \mathrm{e}^{2 x} \ldots \\ & \ldots-2 x^{-2} \end{aligned}$ $\operatorname{At} \operatorname{SP} 2 \mathrm{e}^{2 x}=2 x^{-2}$ Multiplication by x^{2} $x^{2} \mathrm{e}^{2 x}=1$ Take square roots, $x \mathrm{e}^{x}=1$ Then take logs, $\ln x+x=0$ $\mathrm{f}(0.5) \approx-0.19, f(0.6) \approx 0.09$ Change of sign, so root between $\begin{aligned} & \int\left(\mathrm{e}^{2 x}+2 x^{-1}\right) \mathrm{d} x=\frac{1}{2} \mathrm{e}^{2 x} \\ & \ldots+2 \ln x(+c) \end{aligned}$	M1A1 B1 m1 m1 A1 B1 M1A1 B1B1 E1 M1A1 B1	3 3 3 3 3	M1 for $k \mathrm{e}^{2 x}$ OE Dep on m1 convincingly shown (AG) AG (square roots must be mentioned); condone no mention of \pm AG; M1 for use of a log law or $\ln \mathrm{e}^{x}=x$ or $\ln 1=0$ Where $\mathrm{f}(x)=\ln x+x$ AG M1 for $\mathrm{ke}^{2 x}$ Modulus not needed here
		Total	15	
6(a)(i) (ii) (b)(i) (ii) (iii) (iv)	$\begin{aligned} & \operatorname{fg}(x)=\sqrt{x-1} \\ & \operatorname{gf}(x)=\sqrt{x-1} \\ & \operatorname{fg}(1)=\operatorname{gf}(1)=0 \end{aligned}$ Translation 1 unit in (positive) x direction Range of h is $0 \leq \mathrm{h}(x) \leq 2$ Domain of h^{-1} is $0 \leq x \leq 2$ Range of h^{-1} is $1 \leq \mathrm{h}^{-1}(x) \leq 5$ $\begin{aligned} & y=\sqrt{x-1} \Rightarrow y^{2}=x-1 \\ & \ldots \Rightarrow x=y^{2}+1 \end{aligned}$ So $\mathrm{h}^{-1}(x)=x^{2}+1$	B1 B1 B1 M1 A1 B1 B1F B1 M1 m1 A1	2 1 2 3	Accept 'transformation' if clarified 'Positive' may be implied Allow any symbol for $\mathrm{h}(x)$; condone $<$ for \leq; allow ' 0 to 2^{\prime} ft wrong answer in (ii); any symbol for x Allow any symbol for $\mathrm{h}^{-1}(x)$; condone $<$ for \leq; allow ' 1 to 5^{\prime} OE Condone sign error here Allow NMS 3/3
			11	

Q	Solution	Marks	Total	Comments
$\begin{array}{ll}7 & \text { (a) } \\ \\ \\ & \\ \text { (b) }\end{array}$	$\sin \frac{\pi}{6}=\frac{1}{2}$ $\cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}$ $\tan \frac{\pi}{6}=\frac{1}{\sqrt{3}}$ Either $\sin ^{2} x+\cos ^{2} x \equiv 1$ stated Elimination of $\sin x$ or of $\cos x$ $4 \cos ^{2} x=3$ or $4 \sin ^{2} x=1$ Or $\tan x \equiv \sin x / \cos x$ stated Equation in terms of $\tan x$ only $3 \tan ^{2} x=1$ Then one value is $\frac{\pi}{6}$ At least one other value found Values are $\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$ only	B1 B1 B1 M1 ml A1 M1 m1 A1 B1 M1 A1	6	Allow 0.5 OE surd, eg $\sqrt{0.75}$ OE surd, eg $\sqrt{\frac{1}{3}}$ or $\frac{\sqrt{3}}{3}$ or used OE or used OE Condone 0.52 ; condone degrees or decimals throughout NMS $2 / 2$ if completely correct list given Ignore values outside domain
	Total		9	
	Total		60	

[^0]: Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

