AQA

ASSESSMENT and
OUALIFICATIONS

General Certificate of Education

Mathematics 6300 Specification A

MAM3 Mechanics 3

Mark Scheme
 2005 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key to Mark Scheme

M	mark is for
m	mark is dependent on one or more M marks and is for
A	mark is dependent on M or m marks and is for
B	mark is independent of M or m marks and is for
E	mark is for
\checkmark or ft or F	
CAO	
AWFW	
AWRT	
AG	
SC	
OE	
A2,1	
$-\boldsymbol{x}$ EE	
NMS	
PI	
SCA	
c	
sf	
dp	

method
method accuracy
accuracy
explanation
follow through from previous incorrect
result
correct answer only
anything which falls within
anything which rounds to
answer given
special case
or equivalent
2 or 1 (or 0) accuracy marks
deduct x marks for each error
no method shown
possibly implied
substantially correct approach
candidate
significant figure(s)
decimal place(s)

Abbreviations used in Marking

MC - \boldsymbol{x}
MR - \boldsymbol{x}
ISW
BOD
WR
FB
Application of Mark Scheme

No method shown:

Correct answer without working
Incorrect answer without working
More than one method / choice of solution:
2 or more complete attempts, neither/none crossed out
1 complete and 1 partial attempt, neither crossed out
Crossed out work

Alternative solution using a correct or partially correct method
deducted x marks for mis-copy
deducted x marks for mis-read
ignored subsequent working given benefit of doubt work replaced by candidate formulae book

MAM3

MAM3 (cont)

Q	Solution	Marks	Totals	Comments
3(a)	$\left(\begin{array}{r} 2 \\ -8 \end{array}+\frac{a}{b}+-3 \text { - }-4\right)=\binom{3}{-6}$	M1		
	$\binom{a-1}{b-12}=\binom{3}{-6}$			
	$\binom{a}{b}=\binom{4}{6}$	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	
(b)(i)	Moments about O :	M1		may assume clockwise positive must be consistent
	$6 \times 3-4 \times 2-3 \times 2-4 \times 4=-12$	A1		at least 2 correct LHS terms
		A1		correct RHS
	magnitude $=12$	A1	4	must state magnitude for this mark (even if taken "clockwise positive")
(ii)	Clockwise	A1	1	A0 if no M1 scored in (b)(i)
(c)	$-3 d=-12$	M1		
	$d=4$	A1	2	
	Total		10	

MAM3 (cont)

Q	Solution	Marks	Total	Comments
5(a)	M of I of elementary disc about diameter $\begin{aligned} & =\frac{m r^{2}}{4} \\ & =\frac{\pi r^{4} \delta x}{4} \end{aligned}$	B1		
	Parallel axes $\mathrm{I}_{\mathrm{O}}=\mathrm{I}_{\mathrm{G}}+m x^{2}$ $=\frac{\pi r^{4}}{4} \delta x+\pi r^{2} x^{2} \delta x$	M1 A1		
	$\begin{aligned} & \mathrm{I}=\int_{0}^{l} \frac{\pi r^{4}}{4} \mathrm{~d} x+\int_{0}^{l} \pi r^{2} x^{2} \mathrm{~d} x \\ & =\frac{\pi r^{4} l}{4}+\frac{\pi r^{2} l^{3}}{3} \end{aligned}$	M1 A1		integration of both parts
	$\begin{aligned} & \text { But } M=\pi r^{2} l \\ & \Rightarrow \mathrm{I}=\frac{M r^{2}}{4}+\frac{M l^{2}}{3} \end{aligned}$	m1		
	$=M\left(\frac{r^{2}}{4}+\frac{l^{2}}{3}\right)$	A1	7	AG
(b)(i)	$\mathrm{I}=M \times\left(\frac{a^{2}}{4}+\frac{(3 a)^{2}}{3}\right)=\frac{13 M a^{2}}{4}$	B1	1	AG
(ii)	$\text { P.E lost. }=M g \cdot \frac{3 a}{2}(1-\cos \theta)$	M1		for attempts at both energies
	$\text { K.E. gained }=\frac{1}{2} I \dot{\theta}^{2}$			
	$=\frac{1}{2} \frac{13 M a^{2} \dot{\theta}^{2}}{4}$	A1		for at least one energy correct
	$\frac{13 M a^{2} \dot{\theta}^{2}}{8}=\frac{3 M g a}{2}(1-\cos \theta)$	M1		equating
	$\dot{\theta}^{2}=\frac{12 g}{13 a}(1-\cos \theta)$	A1	4	
	Total		12	

MAM3 (cont)

Q	Solution	Marks	Total	Comments
6(a)(i)	$\mathrm{T}_{1}-m g=m r \ddot{\theta}$	M1A1		M1 only if different tensions seen
	$2 m g-\mathrm{T}_{2}=2 m r \ddot{\theta}$	A1	3	
(ii)	$\mathrm{T}_{2} r-\mathrm{T}_{1} r-G=\mathrm{I} \ddot{\theta}=\frac{3 m r^{2}}{2} \ddot{\theta}$	M1A2	3	-1 each error
(iii)	$(2 m g-2 m r \ddot{\theta}) r-(m g+m r \ddot{\theta}) r-G=$			
	$\frac{3 m r^{2}}{2} \ddot{\theta}$	M1A2		substitution/valid attempt to solve -1 each error
	$\begin{aligned} & m g r-G=\frac{3 m r^{2}}{2} \ddot{\theta}+3 m r^{2} \ddot{\theta} \\ & =\frac{9 m r^{2}}{2} \ddot{\theta} \\ & \ddot{\theta}=\frac{2(m g r-G)}{9 m r^{2}} \end{aligned}$	A1 A1	5	for significant progress AG
(b)(i)	Disc turns through α (constant acceleration) when cord detached $\dot{\theta}^{2}=2 \times \frac{2(m g r-G)}{9 m r^{2}} \alpha$	M1		
	$=\frac{4(m g r-G)}{9 m r^{2}} \alpha$	A1	2	AG
(ii)	Cord detached			
	$G=-\frac{3 m r^{2}}{2} \ddot{\theta}_{2}$	M1		full credit given for correct solution using method outside specification
	$\ddot{\theta}_{2}=-\frac{2 G}{3 m r^{2}}$	A1		
	$0=\frac{4(m g r-G)}{9 m r^{2}} \alpha-2 \times \frac{2 G}{3 m r^{2}} \beta$	M1A1		Use of " $v^{2}=u^{2}+2 a s$ "
	$\frac{4(m g r-G)}{3} \alpha=4 G \beta$			
	$G=\frac{m g r \alpha}{\alpha+3 \beta}$	A1	5	
	Total		18	
	TOTAL		60	

