GCE 2004 June Series

Mark Scheme

Mathematics A Unit MAM3

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from:

Publications Department, Aldon House, 39, Heald Grove, Rusholme, Manchester, M14 4NA Tel: 0161 953 1170

or

download from the AQA website: www.aqa.org.uk

Copyright © 2004 AQA and its licensors

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX. Dr Michael Cresswell Director General

www.theallpapers.com

Key to Mark Scheme

Mmark	is for	method
mmark	is dependent on one or more	re M marks and is for method
Amark	is dependent on M or m ma	arks and is foraccuracy
Bmark	is independent of M or m r	narks and is formethod and accuracy
Emark	is for	explanation
\checkmark or ft or F		follow through from previous
		incorrect result
САО		correct answer only
AWFW		anything which falls within
AWRT		anything which rounds to
AG		answer given
SC		special case
OE		or equivalent
A2,1		
<i>-x</i> EE		deduct <i>x</i> marks for each error
NMS		no method shown
PI		possibly implied
SCA		substantially correct approach
c		candidate
SF		significant figure(s)
DP		decimal place(s)

Abbreviations used in Marking

MC – <i>x</i>	deducted x marks for mis-copy
MR – <i>x</i>	
ISW	ignored subsequent working
BOD	given benefit of doubt
WR	work replaced by candidate
FB	formulae booklet

Application of Mark Scheme

No method shown:

Correct answer without working	mark as in scheme			
More than one method/choice of solution: 2 or more complete attempts, neither/none crossed out 1 complete and 1 partial attempt, neither crossed out	mark both/all fully and award the mean mark rounded down award credit for the complete solution only			
Crossed out work	do not mark unless it has not been replaced			
Alternative solution using a correct or partially correct method	award method and accuracy marks as appropriate			

MAM3

Q	Solution	Marks	Total	Comments
1(a)	X = 2W	B1		
	Y = W	B1	2	
(b)	Moments about A:			
	$Wa\sin\theta = 2W2a\cos\theta$	M1A1		
	$\theta = \tan^{-1}4 ~(\approx 76.0^{\circ})$	A1	3	
(c)	P must pass through the point of			
	intersection of the lines of action of W and			
	21/			
	P			
	A			
		B1		Lines of action of W, 2W clearly indicated
	$B \rightarrow 2w$			indicated.
	w	B1	2	Line of action of <i>P</i> clearly passing
				through the intersection of lines of action of W, 2W.
	Total		7	
? (a)	2 revs per second = 4π rad s ⁻¹	A1	/	
2(a)	angular momentum = $1.5 \times 4\pi$	M1		
	$= 6\pi$ (~18.8 kg m ² s ⁻¹)	Al	3	Units not required
				-
(b)	Angular momentum conserved:	M1		
	$6\pi = 8\omega$			
	$\omega = \frac{3\pi}{2} (\approx 2.36 \text{ rad s}^{-1})$	A1	2	
	4 Total		5	

MAM3 (Cont)

Q	Solution	Marks	Total	Comments
3(a)	X = 4 + 3 + 3 + 2 = 12 Y = 3 + 4 + (-3) + 1 = 5	B1 B1		
	$F = \sqrt{(12^2 + 5^2)} = 13$	M1 A1	4	Full credit if 5,12,13 seen
(b)	Moments clockwise about <i>O</i> : $3 \times 2 + 3 \times 3 + 3 \times 4 - 1 \times 3 = 24$	M1A1		Or anticlockwise – must be consistent throughout
	-5d = 24 $d = -4.8$	M1 A1	4	
(c)	L = 24 clockwise	A1FA1	2	ft on magnitude
	Total		10	
4(a)	$I = \frac{1}{2} \times 10m \times a^2$			
	$= \frac{2}{5ma^2}$	A1	1	
(b)	(Taking tension in AB as T_{i} in BC as T_{i})			
	accelerations of A and C are equal:			May be implied by later working for
	$f_{\rm A} = f_{\rm C} = a \dot{\omega}$	B1		full credit
	for B: $a(T_2 - T_1) = 5ma^2 \dot{\omega}$	M1A1		
	for A: $T_1 = ma\dot{\omega}$	M1A1		M1 if both particles attempted
	for C: $2mg - T_2 = 2ma \dot{\omega}$	A1		
	$\therefore 2mg - 2ma\dot{\omega} - ma\dot{\omega} = 5ma\dot{\omega}$	M1		Clear attempt to eliminate T_1, T_2
	$2mg = 8ma\dot{\omega}$			
	$\dot{\omega} = \frac{g}{g}$	A 1	0	A.C.
	4 <i>a</i>	AI	8	AG
	(Alternative solution considering energy			
	changes) $2mgh = \frac{1}{2}mv^2 + \frac{1}{2}2mv^2 + \frac{1}{2}I\dot{\theta}^2$	(M1A2)		– A1 each error
	but $v = a\dot{\theta}, h = a\theta$	(B1)		May be implied
	$\therefore \qquad 2mga\theta = \frac{3}{2}a^2\dot{\theta}^2 + \frac{5}{2}a^2\dot{\theta}^2$	(M1)		
	$g\theta = 2a\dot{\theta}^2$	(A1)		
	$\dot{\theta}^2 = \frac{g}{2a}\theta$	(M1)		May assume constant acceleration for full credit using:
	$2\dot{\theta}\ddot{\theta} = \frac{g}{2a}\dot{\theta}$			$\dot{\theta}^2 = \dot{\theta}_0^2 + 2\ddot{\theta}\theta$
				$\theta^2 = 2 \theta \theta$
	$\ddot{\theta} = \frac{g}{4}$	(A1)	(8)	$g\theta = 2a.2\theta\theta$
	4 <i>a</i>			$\ddot{\theta} = \frac{g}{4}$
	Total		0	4a
	IUtal		,	

MAM3 (Cont)

Q	Solution	Marks	Total	Comments
5(a)	(Using tension in $AB = T_{AB}$, in $BC = T_{BC}$			
	and in $AC = T_{AC}$)			
	Moments about A:			
	$12 \times 2a\cos 60^\circ = Q \times \sqrt{3} a\cos 60^\circ$	M1A1		
	$Q = 8\sqrt{3}$	A1	3	
	2 0 00			
(b)(i)	Resolving along BA at B .	M1		Resolving in either direction
	$T_{AP} = O\cos 30^{\circ}$	A1		Resolving in cluter uncertoin
	$-\sqrt{2}$			
	$= 8\sqrt{3} \times \frac{\sqrt{3}}{2}$			
	- 12	Δ1		
	-12 Resolving along <i>BC</i> at <i>B</i>	211		Alternative solution by resolving
	$T_{PC} = O\sin 30^{\circ}$	A1		horizontally and vertically at <i>B</i> ,
	$r_{\rm BC} = 1$			then solving for T_{AB} T_{BC} full
	$= 8\sqrt{3} \times \frac{1}{2}$	A1		
	$\sqrt{2}$		6	
	$=4\sqrt{3}$	Al	6	
(ii)	T_{AB} is a tension	A1	1	Marks in b(ii), b(iii) only awarded
(iii)	T_{BC} is a tension	A1	1	if M1 awarded in b(i)
(c)	Resolving vertically at C:			
	$12 - 4\sqrt{2} + \pi \sqrt{3}$			
	$12 = 4\sqrt{3} + I_{AC} \times \frac{1}{2}$	MI		
	$T_{4G} = 4\sqrt{3}$	A 1	2	Candidates may solve forces in a
		AI	Δ	different order (e.g. T_{BC} , T_{AC} , T_{AB} ,
				Q) and gain full credit.
	Total		13	

MAM3 (Cont)

Q	Solution	Marks	Total	Comments
6(a)	$I_G = \frac{1}{3}m(3a)^2 = 3ma^2$	M1		Parallel axes
	$I_B = 3ma^2 + ma^2$ $= 4ma^2$	A1	2	
(b)(i)	Rod turned through angle θ : P.E. lost = $mga\sin\theta$			
	K.E. gained = $\frac{1}{2}I\dot{\theta}^2$			
	$= 2ma^2\dot{\theta}^2$ hence, $2ma^2\dot{\theta}^2 = mga\sin\theta$	M1A1		
	$\theta^2 = \frac{g \sin \theta}{2a}$	A1	3	AG
(ii)	$\theta = \sqrt{\frac{8 \sin \theta}{2a}}$ For the rod in motion:			
	$I\ddot{\theta} = mga\cos\theta$ $4ma^2\ddot{\theta} = mga\cos\theta$	M1A1		Or by differentation of $\dot{\theta}^2$
	$\ddot{\theta} = \frac{g\cos\theta}{4a}$	A1	3	
(iii)	$mg\cos\theta - X = ma\ddot{\theta}$	M1A1		
	$X = mg\cos\theta - \frac{mag\cos\theta}{4a}$			
	$=\frac{3mg\cos\theta}{4}$	A1	3	
(c)	$Y - mg\sin\theta = ma\theta^{2}$ $Y = mg\sin\theta + \frac{mag\sin\theta}{mag\sin\theta}$	M1		
	$= \frac{3mg\sin\theta}{2a}$			For M1 must be in context with attempted substitution
	2 At point of slipping	A1		
	$\frac{Y = \mu X}{\frac{3mg\sin\theta}{2}} = \mu \frac{3mg\cos\theta}{4}$	M1 A1		AG
	$\Rightarrow \tan\theta = \frac{\mu}{2}$			
		A1	5	
	Total		16	
	Total		60	