

Mark scheme January 2004

GCE

Mathematics A

Unit MAM3

Copyright © 2004 AQA and its licensors. All rights reserved.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723/MAAA/gtheellpape/SLCOM

AQA

Key to mark scheme

Μ	mark is for	method
m	mark is dependent on one or more M marks and is for	method
Α	mark is dependent on M or m mark and is for	accuracy
В	mark is independent of M or m marks and is for	method and accuracy
Ε	mark is for	explanation
or ft or F		follow through from previous
		incorrect result
CAO		correct answer only
AWFW		anything which falls within
AWRT		anything which rounds to
AG		answer given
SC		special case
OE		or equivalent
A2,1		2 or 1 (or 0) accuracy marks
-x EE		Deduct <i>x</i> marks for each error
NMS		No method shown
PI		Perhaps implied
c		Candidate

Abbreviations used in marking

MC - x	deducted x marks for miscopy
MR - x	deducted x marks for misread
ISW	ignored subsequent working
BOD	gave benefit of doubt
WR	work replaced by candidate

Application of mark scheme

Correct answer without working	mark as in scheme
Incorrect answer without working	zero marks unless specified otherwise

Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

Q	Solution	Marks	Total	Comments
1	0.2 m 5 kg			
(a)	$h = 2\pi r = 2\pi \times 0.2$ $\approx 1.26 \mathrm{m}$	M1 A1	2	Allow 0.4π
(b)	Change in PE of mass = $-mgh$ = $-5 \times g \times 0.4\pi$ = $-2\pi g$ Change in KE of mass = $\frac{1}{2}mv^2$ = $\frac{1}{2} \times 5 \times (a\omega)^2$ = $\frac{1}{2} \times 5 \times (0.2)^2 \omega^2$ = $0.1\omega^2$	M1 A1		For PE + KE of mass For either of PE/KE results
	Change in KE of wheel = $\frac{1}{2}I\omega^2$ = $\frac{1}{2} \times 10 \times \omega^2$ = $5\omega^2$	A1		
	$\therefore 5\omega^2 + 0.1\omega^2 = 2\pi g$ $\omega^2 = \frac{2\pi g}{5.1}$	M1AF		(1 error only)
	$\Rightarrow \omega = 3.47 \text{ rad s}^{-1}$	A1F	6	
		Total	8	

Q	Solution	Marks	Total	Comments
2	A C $4W$ W P D R F			
(a)	Resolving \uparrow $R = 5W$ Ladder in limiting equilibrium $F = \mu R$	B1 M1		
	$=\frac{11}{40}\times 5W$ $=\frac{5W}{4}$	A1	3	AG
(b)	Moments about A(or other appropriate point) $4Wa\cos\theta + W \times 2a\cos\theta + P \times 3a\sin\theta$	M1		
	$+F \times 4a\sin\theta = R \times 4a\cos\theta$ $\Rightarrow 6W\cos\theta + 3P\sin\theta + \frac{5W}{4} \times 4\sin\theta$	A3,2,1		(-1 per error)
	$= 5W \times 4\cos\theta$ $\Rightarrow 3P \times \frac{12}{13} + 5W \times \frac{12}{13} = 14W \times \frac{5}{13}$ $\Rightarrow 36P + 60W = 70W$ $\Rightarrow 36P = 10W$	A1		use of $\sin \theta = \frac{12}{13}$ etc
	$\Rightarrow P = \frac{5W}{18}$	A1F	6	
		Total	9	

Q	Solution	Marks	Total	Comments
3	Sx 2a			
(a)	Mass of elementary ring = $2\pi\rho x \delta x$	M1		
	M.I. of element= $2\pi\rho x.x^2\delta x$	M1		
	$=2\pi px^2\delta x$			
	$\therefore 2\pi\rho \int_{a}^{2a} x^{3} \mathrm{d}x = 2\pi\rho \left[\frac{x^{4}}{4}\right]_{a}^{2a}$	M1		
	$=\frac{2\pi\rho}{4}\left[16a^4-a^4\right]$	A1		
	$=\frac{30\pi\rho a^4}{4}$			
	but $M=3\pi\rho a^2$	M1A1		
	$\Rightarrow \qquad I = \frac{10Ma^2}{4} = \frac{5Ma^2}{2}$	A1	7	
(b)	$\perp \operatorname{axes} I_z = I_x + I_y$	M1		
	$\Rightarrow \frac{5Ma^2}{2} = 2I_D$	A1		
	$\Rightarrow I_D = \frac{5Ma^2}{4}$	A1	3	
		Total	10	

Q	Solution	Marks	Total	Comments
4	$A(0,3)$ $f = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \xrightarrow{f = 1}^{6} B(4,3)$ $(0,d)$			
(a)	$X = 7 - 6 + 5\cos\theta$ $= 1 + 5 \times \frac{4}{5}$ $= 5$	M1A1		Correct at this stage
	$Y = 4 + 5 + 5 \sin \theta$ $= 9 + 5 \times \frac{3}{5}$	M1		
	= 12 \therefore Resultant = $\sqrt{5^2 + 12^2}$	A1		(both X and Y correct)
	= 13	A1	5	САО
(b)(i)	$Xd = -4 \times 4 - 6 \times 3 + 19$ 5d = -15 d = -3	M1A1 A1 A1		(for Xd) 1 st 2 terms RHS
	\therefore line cuts axis at $(0, -3)$	A1 A1	5	(+ 19) CAO [candidate may use "anticlockwise + ve" convention for full marks]
(ii)	Gradient line of action $+\frac{Y}{X} = \frac{12}{5}$	M1A1F		}ft from (a)
	$\therefore y = \frac{12}{5} x - 3$	A1F ∫	3	
	(or any acceptable equivalent			
	e.g $5y = 12x - 15$ etc)			
	Total		13	

Q	Solution	Marks	Total	Comments
5	$\begin{array}{cccc} C & 4a & D \\ & & & & \\ & & & & \\ & & & & \\ & & & &$			
(a)	Block sliding $\therefore P > F$	M1		
	R = W	B1		
	$F = \mu R$			
	hence $P > \mu W$	A1	3	
(b)(i)	C D	A1	1	forces
	$B \qquad F \qquad A$			
(ii)	$P \times 3a \ge W \times 2a$	M1		
	$=> P \ge \frac{2W}{3}$ allow = for A1	A1	2	
(c)	If $\mu = 0.6$, slides when $P > 0.6W$, if not toppled previously	B1		
	If $\mu = 0.667$, topples when $P > 0.667W$ if not started to slide	B1	3	
	∴ slides first	B1	5	
	Total		9	

Q	Solution	Marks	Total	Comments
6	$2l \qquad 3m \qquad 5m \qquad \qquad$			
(a)	$I = \frac{4}{3} \times 3 m \times l^2$			
	$= 4ml^2$	A1	1	AG
(b)(i)	Collision elastic, so			
	$l\omega - v = -(0 - u)$	M1		
	$\Rightarrow l\omega = u + s$	A1	2	AG
(ii)	Angular momentum before: Rod $= 0$	M1		
	Rod = 0 Particle = $5m \times ul = 5mul$	A1		(Angular momentum attempted)
	\therefore Total = 5 <i>mul</i>	A1		
	after:			
	$\operatorname{Rod} = I\omega = 4ml^2\omega$			
	Particle = $5 mvl$			
	$\therefore \text{ Total} = 4ml^2 \omega + 5mvl$ Momentum conserved	A1		
	$\therefore 5 mul = 4 ml^2 \omega + 5 mvl$			
	$\Rightarrow 5u = 4l\omega + 5v$	A1		
	$\therefore 5u = 4(u+v) + 5v$ 5u = 4u + 9v			
		M1		Solving equations
	$\Rightarrow v = \frac{u}{9}$	A1	6	CAO (AG)
(iii)	Particle moving in same direction initially	A1	1	
(c)	$l \omega = u + \frac{u}{9}$			
	$=\frac{10u}{9}$			
	$\Rightarrow \omega = \frac{10u}{9l}$	A1	1	
		Total Total	11	
		Total	60	

www.theallpapers.com