AQA

ASSESSMENT and
OUALIFICATIONS

General Certificate of Education

Mathematics 6300 Specification A

MAM2/W Mechanics 2

Mark Scheme
 2005 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key to Mark Scheme

M	mark is for
\mathbf{m}	mark is dependent on one or more M marks and is for
A	mark is dependent on M or m marks and is for
B	mark is independent of M or m marks and is for
E	mark is for
Sor ft or \mathbf{F}	
CAO	
AWFW	
AWRT	
AG	
SC	
OE	
A2,1	
$-\boldsymbol{x}$ EE	
NMS	
PI	
SCA	
C	
Sf	
dp	

Abbreviations used in Marking

MC - \boldsymbol{x}
MR - \boldsymbol{x}
ISW
BOD
WR
FB

Application of Mark Scheme

No method shown:

Correct answer without working
Incorrect answer without working
More than one method / choice of solution:
2 or more complete attempts, neither/none crossed out
1 complete and 1 partial attempt, neither crossed out
Crossed out work
Alternative solution using a correct or partially correct method

Applan

method
method
accuracy
accuracy
explanation
follow through from previous incorrect
result
correct answer only
anything which falls within
anything which rounds to
answer given
special case
or equivalent
2 or 1 (or 0) accuracy marks
deduct x marks for each error
no method shown
possibly implied
substantially correct approach
candidate
significant figure(s)
decimal place(s)

MAM2/W

Q	Solution	Marks	Total	Comments
1	areas distance from N small $\pi(1)^{2}$ 2 large $\pi(2)^{2}$ 3 earring $\pi(2)^{2}-\pi(1)^{2}$ \bar{x} using $\sum(m x)=\left(\sum m\right) \bar{x}$ $\begin{aligned} & 2(4 \pi)-3(\pi)=3 \pi \bar{x} \\ & 5 \pi=3 \pi \bar{x} \\ & \bar{x}=\frac{5}{3} \text { or } 1 \frac{2}{3} \text { or } 1.67 \mathrm{~cm} \end{aligned}$	M1 M1 M1 A1 A1	5	attempt to find area of one circle (evidence of πr^{2}) $3 \pi \bar{x}$ or (difference of their areas) \bar{x} one other moment evident fully correct
	Total		5	
2(a)	$\begin{aligned} & \text { impulse }=m v-m u \\ & =240(1)-240(-2) \\ & =720 \mathrm{~N} \mathrm{~s} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1 } \checkmark \end{gathered}$	3	attempt to use $\|m v-m u\|$ correct signs must have units; ft applies to 240 N s only
(b)(i)	$t=0,1.2$	B1	1	
(ii)		$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	shape symmetrical / axis / labels
(iii)	max when $t=0.6$ (symmetry) $\begin{aligned} & F(0.6)=500(0.6)(6-5 \times 0.6) \\ & =300 \times 3 \\ & =900 \mathrm{~N} \end{aligned}$	B1 M1 A1	3	t value found/stated attempt to find F AG
(iv)	total area below curve $=$ impulse magnitude	E1	1	
	Total		10	

MAM2/W (cont)

Q	Solution	Marks	Total	Comments
3(a)		B1	1	F towards centre scores B0
(b)(i)	$F=40 \mathrm{~g}$ or 392 N	B1	1	
(ii)	$F \leq \mu N$			
	$392 \leq \mu 784$	M1		use of \leq or $=$
	$\mu \geq \frac{784}{392}=0.5$	A1	2	
(iii)	$N=m r \omega^{2}$	M1		$m r \omega^{2}$ seen or used
	$784=40(3) \omega^{2}$	A1		values substituted
	$\begin{aligned} & \omega^{2}=6.5 \dot{3} \\ & \omega \approx 2.56 \end{aligned}$	A1	3	AG
(c)	Martin modelled as a particle	B1	1	any suitable assumption
	Total		8	

MAM2/W (cont)

MAM2/W (cont)

MAM2/W (cont)

Q	Solution	Marks	Total	Comments
6(a)	use of $m g h$	M1		
	$60(9.8)\left(20-20 \cos 60^{\circ}\right)$	B1		$20 \cos 60^{\circ}$ seen
	$=5880 \mathrm{~J}$	A1	3	
(b)(i)	energy at $M=$ energy at P $\frac{1}{2} m u^{2}+m g h=\frac{1}{2} m v^{2}$			
	$\frac{1}{2}(60)(6)^{2}+60(9.8)(20-20 \cos \theta)$	M1		M1 one term correct
		A1		A1 two terms correct
	$=\frac{1}{2}(60) v^{2}$	A1		fully correct
	$\begin{aligned} & 18+196-196 \cos \theta=\frac{1}{2} v^{2} \\ & v^{2}=428-392 \cos \theta \end{aligned}$	A1	4	AG
(ii)	$m g \cos \theta-\mathrm{N}=\frac{m v^{2}}{r}$	B1		$\frac{m v^{2}}{r}$ used or seen
		M1		attempt at Newton's law
	$60(9.8) \cos \theta-\mathrm{N}=\frac{60}{20}(428-392 \cos \theta)$	A1		substitute v^{2}
	$\begin{aligned} & \mathrm{N}=588 \cos \theta-1284+1176 \cos \theta \\ & \text { or } 1764 \cos \theta-1284 \end{aligned}$	A1	4	can be unsimplified - must be $\mathrm{N}=\ldots$
(iii)	$\mathrm{N}>0$ from M to N			
	$1764 \cos \theta-1284>0$	M1		solve equation or inequality
	$\therefore \cos \theta>\frac{1284}{1764} \approx 0.72789$			
	$\theta<43.2 \ldots$	Al \checkmark		finding an angle $<90^{\circ}$
	loses contact since $43^{\circ}<60^{\circ}$	A1	3	correct interpretation
	Alternative method:			
	when $\theta=60^{\circ}$	(M1)		evaluate N at end of bridge
	$\mathrm{N}=-402<0$	$(\mathrm{A} 1 \checkmark)$		their N evaluated
	loses contact before end of bridge			correct interpretation
	Total		14	
	TOTAL		60	

