GCE 2005 January Series

Mark Scheme

Mathematics A (MAM2)

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2005 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX. Dr Michael Cresswell Director General

Key to Mark Scheme

M	mark is for		method
m	mark is dependent on c	one or more M marks and is	for method
Α	mark is dependent on M	A or m marks and is for	accuracy
B	mark is independent of	M or m marks and is for	method and accuracy
E	mark is for		explanation
		follo	
			incorrect result
CAO			correct answer only
		an	
AWRT			anything which rounds to
		2 or	
- <i>x</i> EE		dedı	ict <i>x</i> marks for each error
PI			possibly implied
SCA		subst	antially correct approach
			2 11
			1 ()

Abbreviations used in Marking

MC – <i>x</i>	deducted x marks for mis-copy
MR – <i>x</i>	
ISW	
BOD	
WR	work replaced by candidate
FB	

Application of Mark Scheme

No method shown:	
Correct answer without working	mark as in scheme
Incorrect answer without working	zero marks unless specified otherwise
More than one method/choice of solution:	
2 or more complete attempts, neither/none mark	mark both/all fully and award the mean
crossed out	rounded down
1 complete and 1 partial attempt, neither crossed out	award credit for the complete solution only
Crossed out work	do not mark unless it has not been replaced
Alternative solution using a correct or partially correct method approx	award method and accuracy marks as opriate

Q	Solution	Marks	Total	Comments
1(a)	$KE = \frac{1}{2}mv^{2}$ $v^{2} = 3^{2} + 4^{2} = 25$ $KE = \frac{1}{2}(2)25$ $= 25(J)$			
	$v^2 = 3^2 + 4^2 = 25$	M1		Attempt to use $\frac{1}{2}mv^2$ or $\frac{1}{2}mv$.v to
	$\mathrm{KE} = \frac{1}{2}(2)25$			evaluate v^2
	= 25(J)	A1	2	
(b)	$Power = \mathbf{F}.\mathbf{v}$			
	$= \begin{pmatrix} 6 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 4 \end{pmatrix}$	M1		Use of formula (18 or 4 seen)
	=14(W)	A1	2	
	Total		4	

MAM2 (con Q	Solution	Marks	Total	Comments
2(a)	3(2M) + 3(3M) = 15M	B1	1	
(b)(i)	From BC , $\sum Mx = (\sum M) \overline{x}$ $2M(0.6) + 3M(0.15) + 3M(0.15) + 3M(0.45) + 2M(0.3) = 15 M\overline{x}$ $\overline{x} = 0.27$ metres	M1 A1√ A1√ A1	4	Attempt to use (one term correct) 2 terms All correct AG, ft incorrect part (a)
(ii)	From $CE \sum My = (\sum M)\overline{y}$ 2M(0.1) + 2M(0.1) + 2M(0.1) + 3M(0.2) $= 15 M\overline{y}$ $\overline{y} = 0.08$ metres	M1A1√ A1	3	M1 – one term correct
(c)				
	0.27 0.08			
	$\tan\theta = \frac{\overline{y}}{\overline{x}}$	M1		Application
	$=\frac{8}{27}$ or 0.0296	A1√		\overline{x} and <u>their</u> \overline{y}
	$\theta \approx 16.5^{\circ}$	A1	3	CAO
	Total		11	

Q	Solution	Marks	Total	Comments
3(a)	KE = Initial PE			Alternative for (a):
	$\frac{1}{2}(50)v^2 = (50)g(20)$	M1		Use of $v^2 = u^2 + 2as$
	$\therefore v^2 = 40 \mathrm{g}$			$v^2 = 0^2 + 2g \ (20)$
	$v \approx 19.8 \text{ ms}^{-1}$	A1	2	$v = 19.8 \text{ ms}^{-1}$
				Alternative for (b)(i):
(b)(i)	EPE after stretching = PE at start	M1		EPE after stretching = $PE + KE$ at natural length
	= 50g(32)			$= 50(g) (12) + \frac{1}{2} (50) (19.8)^2$
	= 15 680 J	A1	2	AG = 15680 J
(ii)	$\frac{1}{2}k(32-20)^2 = 15\ 680$	M1B1		B1 for $\frac{1}{2} k x^2$; M1 for equation
	$72k = 15\ 680$			
	<i>k</i> = 218	A1	3	A1 CAO
	Total		7	

Q	Solution	Marks	Total	Comments
4(a)(i)	<u>P</u> <u>Q</u>			
	u u			
	(2m) (m)			
	\overrightarrow{w} \overrightarrow{v}			
	Conservation of momentum			
	$2mu - mu = mv + 2mw$ $u = v + 2w \qquad (1)$	M1A1		M1 one momentum term correct
	u = v + 2w (1) Restitution			
	$v - w = 2ue \qquad (2)$	M1A1		M1 $e \times$ speed of approach seen
	(1)-(2) gives $3w = u - 2ue$	M1		
	$w = \frac{u}{3}(1-2e)$	A1		
	(1)+2(2) gives $u(1+4e) = 3v$			
	$v = \frac{u}{3}(1+4e)$	B1√	7	
(ii)	v always positive, so same direction			
	when $\frac{u}{3}(1-2e) > 0$	M1		For > 0 or solving $= 0$
	$\therefore 1 - 2e > 0$	A1	2	Must be convincing about <
	$e < \frac{1}{2}$			
(b)(i)	I = mv - mu	M1		Use of $mv - mu$
	$= m\frac{u}{3}(1+4e) + mu$	A1		Paired speeds correct
	$= m\frac{u}{3}(1+4e) + mu$ $= 4\frac{mu}{3}(1+e)$	A1	3	Printed answer
	1			
(ii)	$0 \le e < -\frac{1}{2}$	M1		Use of <i>e</i> values in <i>I</i>
	0 ≤ e < $\frac{1}{2}$ ∴ $\frac{4mu}{3}(1+0) \le I < \frac{4mu}{3}(1+\frac{1}{2})$			
	$\frac{4mu}{3} \le I < 2mu$	A1	2	Printed answer
	Total		14	

Q	Solution	Marks	Total	Comments
5(a)	KE at Q = Change in PE from P to Q	B1		Any one term considered
		M1		Attempt at eqn – KE and PE included
	$\frac{1}{2}mv^{2} = mgr(\cos 30^{\circ} - \cos \theta)$ $v^{2} = gr\left(\sqrt{3} - 2\cos \theta\right)$	A1		Fully correct
	$v^2 = gr\left(\sqrt{3} - 2\cos\theta\right)$	A1	4	AG
(b)	\mathbf{x}^{N}			
	θ mg			$\frac{mv^2}{r}$ used
	$mg\cos\theta - N = \frac{mv^2}{r}$	M1A1B1		Res force = $\frac{mv^2}{r}$ for M1
	$mg\cos\theta - N = mg\left(\sqrt{3} - 2\cos\theta\right)$	M1		– use of v^2 from (a)
	$N = mg\left(3\cos\theta - \sqrt{3}\right)$	A1	5	Must rearrange for $N = \dots$
(c)	When $\theta = \alpha$, $N = 0$			
	$\therefore 3\cos\alpha - \sqrt{3} = 0$	M1		N = 0 and solve
	$\cos\alpha = \frac{\sqrt{3}}{3}$			
	$\alpha = 55^{\circ}$	A1√	2	Follow through but $30^{\circ} < \alpha < 90^{\circ}$
	Total		11	

Q	Solution	Marks	Total	Comments
6(a)	Period = $\frac{2\pi}{2\pi}$	M1		
(b)(i)	ω $\therefore 1.5 = \frac{2\pi}{\omega}$ $\omega = \frac{2\pi}{1.5} = \frac{4\pi}{3} = 1.3\pi$ Acceleration $= r\omega^2$	A1	2	Any – must leave π
	$=0.6\left(\frac{4\pi}{3}\right)^2$	M1		Attempt to use formula
	=10.5 or $\frac{16\pi^2}{15}$	A1√	2	Follow through their ω
(ii)	\bigcirc	B1	1	
(c)(i)	0.25g (or mg or W)	B1	1	could be on a single diagram
(ii)	Vertically (let $A\hat{B}O = \alpha$) $T \sin \alpha = mg(1)$ Horizontally $T \cos \alpha = mr\omega^2$ (2) (1)÷(2) $\tan \alpha = \frac{g}{r\omega^2}$	M1A1 M1A1√ M1		Values may or may not be substituted in each equation throughout ft $r\omega^2$ from b(i) Dividing to get tan α or square and add to get <i>T</i> first
	$\alpha = \tan^{-1} \frac{9.8}{0.6 \left(\frac{4\pi}{3}\right)^2} \text{or } \tan^{-1} \left(0.9308\right)$ $\alpha = 43^\circ$	A1	6	Rounds to 43°
(d)	No air resistance	F 1	1	
	Modelled as a particle Total	E1	1 13	
	Total		60	