General Certificate of Education (A-level) June2013

Electronics

ELEC2
(Specification 2430)
Unit 2: Further Electronics

Final

Mark Scheme

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: $\underline{\text { aqa.org.uk }}$
Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

| | (b) | Formula
 120 mV
 0.12 V
 (No unit error if obvious) | $\mathbf{2}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- |

(a)

1	(d)		(No possible ecf from (c)) Calculation $10 \mathrm{kHz}$	2
2	(a)	(i)	D to $\overline{\mathbf{Q}}$ Input to CK Outputs Q or $\overline{\mathbf{Q}}$	3
2	(a)	(ii)	Output half the frequency of the input Output only changes on rising edge of input	2
2	(b)	(i)	Sensible calculation $2.4(\mathrm{kHz})$	2
2	(b)	(ii)	$\overline{\mathbf{Q}}$ to next clock D to $\overline{\mathbf{Q}}$ AND inputs to 1 and 4 AND output to joined Resets	4
3	(a)		Resistor between $+\mathrm{V}_{\mathrm{s}}$ and discharge Resistor between discharge and trigger Trigger and threshold connected C between threshold and OV	4
3	(b)		Formula Correct substitution 477.6 Hz (Not 480Hz)	3
3	(c)		Formula Substitution $108-109 \mathrm{k} \Omega(108.591 \mathrm{k} \Omega)$	3

5	(c)		50\% of maximum power output Giving answer of 20 Hz to around 300 kHz (If $70 \% 50 \mathrm{~Hz}-100 \mathrm{kHz}$ then 1 max only)	2
6	(a)		Feedback resistor to inverting input Series inverting input resistor Series non-inverting input resistor Resistor from non- inverting input to 0 V - same value as R_{f} All resistors in range $1 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$ Must have negative feedback then ratio of gain resistors = 100	6
6	(b)	(i)	3 V	1
6	(b)	(ii)	OV No difference The same	1

