

General Certificate of Education Advanced Subsidiary Examination June 2011

## **Electronics**

## ELEC2

Data Sheet Unit 2 Further Electronics

| <b></b>                            | ŝ                                                                                                                                                                                   |                                               |  |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--|
| Resistors                          | Preferred values for resistors (E24) series:<br>1.0, 1.1, 1.2, 1.3, 1.5, 1.6, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.6, 3.9, 4.3,<br>4.7, 5.1, 5.6, 6.2, 6.8, 7.5, 8.2, 9.1 ohms etc. |                                               |  |
| Resistor Printed Code<br>(BS 1852) | R means × 1<br>K means × 1000 (i.e. $10^3$ )<br>M means × 1 000 000 (i.e. $10^6$ )                                                                                                  |                                               |  |
|                                    | Position of the letter gives the of Tolerances are given by the lett $F = \pm 1\%$ , $G = \pm 2\%$ , $J = \pm 5\%$                                                                  | ter at the end of the code,                   |  |
| Resistor Colour Code               | NumberColour0Black1Brown2Red3Orange4Yellow5Green6Blue7Violet8Grey9White                                                                                                             | Tolerance<br>Value<br>Tolerance<br>Multiplier |  |
|                                    | Tolerance, gold = $\pm 5\%$ , silver = $\pm 10\%$ , no band = $\pm 20\%$                                                                                                            |                                               |  |
| Silicon diode                      | $V_{\rm F} = 0.7 \ { m V}$                                                                                                                                                          |                                               |  |
|                                    | $V_{\rm be} \approx 0.7  {\rm V}$ in the on state, $V_{\rm ce} \approx 0.2  {\rm V}$ when saturated                                                                                 |                                               |  |
| Resistance                         | $R_{\mathrm{T}} = R_1 + R_2 + R_3 + \dots$                                                                                                                                          | series                                        |  |
|                                    | $\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$                                                                                                             | parallel                                      |  |
| Capacitance                        | $\frac{1}{C_T} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots$                                                                                                             | series                                        |  |
|                                    | $C_{\rm T} = C_1 + C_2 + C_3 + \dots$                                                                                                                                               | parallel                                      |  |
| Time constant                      | $T = CR, T_{\frac{1}{2}} = 0.69 CR$                                                                                                                                                 |                                               |  |
| ac theory                          | $I_{\rm rms} = \frac{I_0}{\sqrt{2}}$                                                                                                                                                |                                               |  |
|                                    | $V_{\rm rms} = -\frac{V_0}{\sqrt{2}}$                                                                                                                                               |                                               |  |
|                                    | $X_{\rm C} = -\frac{1}{2\pi fC}$                                                                                                                                                    | reactance                                     |  |
|                                    | $X_{\rm L} = 2\pi f L$                                                                                                                                                              | reactance                                     |  |
|                                    | $f = \frac{1}{T}$                                                                                                                                                                   | frequency, period                             |  |
|                                    | $f_0 = \frac{1}{2\pi\sqrt{LC}}$                                                                                                                                                     | resonant frequency                            |  |

This insert page should not be sent to the examiner

| Operational amplifier     | $G_{\rm V} = \frac{V_{\rm out}}{V_{\rm in}}$                                                  | voltage gain      |
|---------------------------|-----------------------------------------------------------------------------------------------|-------------------|
|                           | $G_{\rm V} = -\frac{R_{\rm f}}{R_{\rm 1}}$                                                    | inverting         |
|                           | $G_{\rm V} = 1 + \frac{R_{\rm f}}{R_{\rm l}}$                                                 | non-inverting     |
|                           | $V_{\rm out} = -R_{\rm f} \left( \frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} \right)$ | summing           |
|                           | $V_{\rm out} = (V_+ - V) \frac{R_{\rm f}}{R_{\rm 1}}$                                         | difference        |
| 555 Astable and Monstable | T = 1.1 RC                                                                                    | monostable        |
|                           | $t_{\rm H} = 0.7 \ (R_{\rm A} + R_{\rm B})C$<br>$t_{\rm L} = 0.7 \ R_{\rm B}C$                | astable           |
|                           | $f = \frac{1.44}{(R_{\rm A} + 2R_{\rm B})C}$                                                  | astable frequency |
| Electromagnetic waves     | $c = 3 \times 10^8 \mathrm{ms}^{-1}$                                                          | speed in vacuo    |

Assembler language microcontroller instructions

| 1 10001110101 | ianguage ini | crocond oner mytractions     |                            |       |                 |
|---------------|--------------|------------------------------|----------------------------|-------|-----------------|
| Mnemonic      | Operands     | Description                  | Operation                  | Flags | Clock<br>cycles |
| NOP           | none         | No operation                 | none                       | none  | 1               |
| CALL          | K            | Call subroutine              | stack <=PC<br>PC <=K       | none  | 2               |
| RET           | none         | Return from subroutine       | PC <= stack                | none  | 2               |
| INC           | D            |                              | (D) < (D) + 1              | 7     | 1               |
|               | R            | Increments the contents of R | $(R) \le (R) + 1$          | Z     | 1               |
| DEC           | R            | Decrements the contents of R | $(R) \le (R) - 1$          | Z     | 1               |
|               |              |                              |                            |       |                 |
| ADDW          | K            | Add K to W                   | $W \le W + K$              | Z, C  | 1               |
| ANDW          | K            | AND K with W                 | W <= W • K                 | Z, C  | 1               |
| SUBW          | K            | Subtract K from W            | W <= W – K                 | Z, C  | 1               |
| ORW           | K            | OR K and W                   | $W \leq W + K$             | Z, C  | 1               |
| XORW          | K            | XOR K and W                  | $W \leq = W \oplus K$      | Z, C  | 1               |
|               |              |                              |                            |       |                 |
| JMP           | K            | Jump to K (GOTO)             | $PC \leq K$                | none  | 2               |
| JPZ           | K            | Jump to K on zero            | PC <= K if Z=1             | Z=1   | 2               |
| JPC           | K            | Jump to K on carry           | $PC \le K \text{ if } C=1$ | C=1   | 2               |
|               |              |                              |                            |       |                 |
| MOVWR         | R            | Move W to the contents of R  | (R) <= W                   | Z     | 1               |
| MOVW          | K            | Move K to W                  | W <= K                     | Z     | 1               |
| MOVRW         | R            | Move the contents of R to W  | W <= (R)                   | Z     | 1               |