Centre Number						Candidate Number		
Surname								
Other Names								
Candidate Signature								

General Certificate of Education Advanced Subsidiary Examination June 2010

Electronics

Unit 1 Introductory Electronics

Thursday 20 May $2010 \quad 9.00$ am to 10.00 am

```
For this paper you must have:
- a pencil and ruler
- a calculator
- a Data Sheet.
```


Time allowed

- 1 hour

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 67 .

Answer all questions in the spaces provided.

1 The Boolean equation for a logic circuit with inputs A and B and output Q is:

$$
Q=(A \cdot B)+(\bar{A} \cdot \bar{B})
$$

1 (a) Complete the truth table to show the logic values of the terms below for all the combinations of the inputs A and B.

\mathbf{A}	\mathbf{B}	$\overline{\mathbf{A}}$	$\overline{\mathbf{B}}$	$\mathbf{A} \cdot \mathbf{B}$	$\overline{\mathbf{A}} \cdot \overline{\mathbf{B}}$	\mathbf{Q}
0	0					
0	1					
1	0					
1	1					

(5 marks)
1 (b) Complete the diagram below to show how a logic circuit can be constructed that has the same function as the Boolean equation above using two AND gates, two NOT gates, and one OR gate.

A

B

1 (c) State the logic function of the complete circuit above.
\qquad

2 A student designs an electronic system to control a ventilation fan for a greenhouse. The fan should be switched on only when both the temperature and humidity exceed certain levels that can each be set independently.

2 (a) Choosing appropriate input, process and output subsystems from the list below, draw a labelled block diagram to show a possible design for the system.

Choose from:

AND gate	comparator	driver	humidity sensor
fan motor	temperature sensor	voltage divider	

2 (b) In which subsystem would:
2 (b) (i) a MOSFET be used

2 (b) (ii) an op-amp be used

2 (b) (iii) a thermistor be used? \qquad

2 (c) The controller circuit operates from a 12 V power supply and draws a current of 25 mA under all conditions.
The fan motor requires a current of 450 mA when switched on and operates from the same 12 V power supply.

Calculate:
2 (c) (i) the total current drawn by the whole system when the fan motor is switched on
\qquad

2 (c) (ii) the input power to the whole system when the fan motor is switched on.

3 A student builds a quiz-scoring circuit that has five LEDs as its output. The student connects each of the five outputs of the circuit to the LEDs via five identical resistors as shown below.

3 (a) Each LED has a forward voltage drop of 1.7 V at the maximum forward current of 20 mA and the circuit produces a 9 V output signal when the corresponding LED is switched on.

3 (a) (i) Calculate the voltage across a resistor R when its LED is switched on.
\qquad

3 (a) (ii) Calculate the value of the resistor R needed.
\qquad
\qquad

3 (a) (iii) Select the most suitable preferred value from the E 24 series for R if the maximum current for the LED is not to be exceeded.
\qquad

3 (a) (iv) Calculate the actual current through the LED when the preferred value of resistor in part (a)(iii) is used; assume the LED forward voltage drop remains at 1.7 V .
\qquad
\qquad

3 (a) (v) With no LEDs switched on, the quiz-scoring circuit alone draws 30 mA from the 9 V power supply. Calculate the current consumption of this circuit with all the LEDs switched on.
\qquad

3 (a) (vi) Comment on the suitability of a small, low capacity 9 V battery to power this system.
\qquad
\qquad

3 (b) The student decides to economise on resistors by connecting all the LED anodes directly to the outputs of the circuit, and using a single resistor of the preferred value chosen in part (a)(iii) to connect all LED cathodes to 0 V .

3 (b) (i) Estimate the current through each active LED when three of them are switched on at the same time.
\qquad

3 (b) (ii) Describe the appearance of the LEDs as different numbers of them are switched on. Comment on the desirability of using a single resistor.
\qquad
\qquad

Turn over for the next question

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

4 An electromagnetic relay is controlled by a MOSFET from a 12 V power supply.
4 (a) Complete the circuit diagram below to show how the relay is connected to the MOSFET. Draw the symbol for, and label the leads of the MOSFET.

(4 marks)

4 (b) Draw on the circuit diagram above the component required to protect the MOSFET when the relay coil is switched off.

4 (c) Write out in full the meaning of the relay contact labels.
NC \qquad
COM. \qquad
NO \qquad

5 A butcher wants to fit an alarm to a deep freeze, which will warn him if there is a danger of damage to stock in the freezer.

The freezer has sensors with the following outputs:
T is logic 1 if the temperature is too high to store frozen food; and logic 0 if the temperature is at or below the required temperature C is logic 1 if the lid is closed and logic 0 if the lid is open.

A student is asked to produce a logic system to give an output A to operate the alarm (the alarm sounds if A is high). He decides that the alarm should sound if:
the lid is closed and the temperature is too high, or the temperature is low and the lid is left open.

5 (a) He designs a system to implement this function. Write a Boolean expression for the output A, in terms of T and C.
\qquad

5 (b) Draw a logic diagram for the system, using any type of logic gates.

5 (c) Using NAND gates only, draw a diagram of a logic system which has the same function as a 2 -input OR gate.

5 (d) Draw a logic diagram for the system in part (b), using NAND gates only. Draw a ring round any redundant gates or re-draw the final system.

6 A temperature sensor input subsystem is shown below.

6 (a) The thermistor shown above has a resistance of $45 \mathrm{k} \Omega$ at $0^{\circ} \mathrm{C}, 20 \mathrm{k} \Omega$ at $25^{\circ} \mathrm{C}$, and $1 \mathrm{k} \Omega$ at $100^{\circ} \mathrm{C}$.
Calculate the output voltage at B at a temperature of $25^{\circ} \mathrm{C}$.
\qquad
\qquad

6 (b) The temperature sensor input subsystem is connected to the comparator circuit as shown below.

Calculate and choose values of resistors, in the $1 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$ range, for the circuit that will make the comparator switch at $25^{\circ} \mathrm{C}$. Label these on the diagram.
\qquad
\qquad

6 (c) What voltage would you expect from the output of this circuit when:
6 (c) (i) the temperature is $20^{\circ} \mathrm{C}$ \qquad

6 (c) (ii) the temperature rises to $30^{\circ} \mathrm{C}$?

END OF QUESTIONS

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

