

Surname					Othe	er Names			
Centre Number						Candidate Number			
Candidate Signatu	ıre								

For Examiner's Use

General Certificate of Education January 2007 Advanced Level Examination

QUALIFICATIONS

ALLIANCE

COMPUTING CPT4 Unit 4 Processing and Programming Techniques

9.00 am to 10.30 am Wednesday 24 January 2007

You will need no other materials. You may use a calculator

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen.
- Fill in the boxes at the top of this page.
- Answer **all** questions.
- Answer the questions in the spaces provided.
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The maximum mark for this paper is 65.
- The marks for questions are shown in brackets.
- The use of brand names in your answers will **not** gain credit.
- You are reminded of the need for good English and clear presentation in your answers. Quality of Written Communication will be assessed in all answers.

For Examiner's Use							
Question	Mark	Question	Mark				
1		5					
2		6					
3		7					
4		8					
Total (Column 1)							
Total (Column 2)							
TOTAL							
Examiner'	's Initials						

1

Answer all questions in the spaces provided
--

The	binary	pattern (0100 0000 11	10 can be	interpret	ed in a	a number	of diff	erent wa	ys.
(a)	State	its hexad	lecimal repre	sentation.		•••••		•••••		(1 mark)
(b)			as a decimal epresentation		f it repres	sents a	signed b	inary i	nteger us	
	•••••	••••••	•••••			•••••	•••••	•••••	•••••	(1 mark)
(c)			as a decimal after the bina		f it repres	sents a	n unsigne	ed fixe	d point n	umber
				••••••	••••••		••••••	•••••		(2 marks)
(d)	(i)		value as a dember with an							
				Mantissa			Exponent	-		
			0 • 1 0	0 0	0 0 0	0 1	1 1	0		
		••••••	•••••				•••••	•••••	•••••	(3 marks)
	(ii)		ating point nues the bit patt	ern indica	te that th	is nun	nber is no			
						•••••		•••••		(1 mark)
	(iii)	What is represen	the largest potation?	ositive val	ue that ca	n be s	tored in t	his flo	ating poi	nt
		••••••			•••••	••••••	••••••	•••••	•••••	(2 marks)

10

2

Figure 1

As part of the fetch-execute cycle of a computer system the processor has to fetch the next instruction. Figure 1 shows the main components used. They are used in the sequence 1, 2, 3, 4, 5, 6 to fetch the next instruction. Name the components by completing **Table 1** below.

Table 1

Component	Name
1	Program Counter
2	
3	
4	
5	
6	

(5 marks)

5

Turn over for the next question

- 3 A logic program is used to represent, as a set of facts and rules, personal details. The set of facts is shown below in clauses labelled 1 to 14.
 - 1. hall (deansgate)
 - 2. hall (wilson)
 - 3. resident (laura, deansgate)
 - 4. resident (jayesh, deansgate)
 - resident (elliott, deansgate)
 - resident (kylie, deansgate)
 - 7. resident (tanya, wilson)
 - 8. resident (kevin, wilson)
 - studies (laura, computing)
 - 10. studies (jayesh, mathematics)
 - 11. studies (elliott, english)
 - studies (kylie, computing) 12.
 - 13. studies (tanya, mathematics)
 - 14. studies (kevin, computing)

Clause	Meaning
1	There is a university hall of residence called deansgate.
3	There is a resident of deansgate called laura.
9	There is a student called laura who studies computing.

(a)	There is a student named richard who is studying computing and is resident in kingston hall. Write the extra clauses required to represent these facts.
	(3 marks)
(b)	The clause studies (laura, Subject) would return the result computing.
	Write the result returned by the goal studies (Name, mathematics).
	(2 marks)
(c)	Complete a rule that could be used to list the students who study a given subject and who live in a given hall.
	subjectandhall (Name, Subject, Hall)IF
	(3 marks)

4	(a)		th and interactive are two different modes of operation of a computer sy eant by these terms?	stem. What
		(i)	Batch	
				(1 mark)
		(ii)	Interactive	
				(1 mark)
((b)	norn	atch process may be controlled by Job Control Language (JCL). The JC nally contain a <i>batch header</i> . Name three items of control that may be tch header.	
		1		
		2		
		3		(3 marks)
	(c)	(i)	Should batch processes or interactive processes be given higher priori operating system?	ty by the
				(1 mark)
		(ii)	Give a reason for your choice.	
				(1 mark)
		(iii)	Give two other features that may affect the priority of a process.	
			1	
			2	(2 marks)

Turn over for the next question

5 A computer system has the following assembly code instructions, some of which you are to use in this question.

Label	Opcode	Operand	Description
label	DEFB		Allocate a byte of memory for a variable
label	DEFB	#nn	Allocate a byte of memory for a variable and initialise it to the
			hexadecimal value nn
	AND	#nn	Logical AND the accumulator with hexadecimal value nn
	OR	#nn	Logical OR the accumulator with hexadecimal value nn
	LD	#nn	Load the hexadecimal value nn into the accumulator
	LD	label	Load contents of the labelled memory into the accumulator
	ST	label	Store contents of the accumulator into the labelled memory
	ADD	#nn	Add the hexadecimal value nn to the accumulator
	ADD	label	Add the contents of the labelled memory to the accumulator
	SUB	#nn	Subtract the hexadecimal value nn from the accumulator
	SUB	label	Subtract the contents of the labelled memory from the accumulator
	MUL	#nn	Multiply the accumulator by the hexadecimal value nn
	MUL	label	Multiply the accumulator by the contents of the labelled memory
	DIV	#nn	Divide the accumulator by the hexadecimal value nn
	DIV	label	Divide the accumulator by the contents of the labelled memory
	CMP	#nn	Compare the accumulator with hexadecimal value nn
	CMP	label	Compare the accumulator with the contents of the labelled
			memory
	JP	label	Jump unconditionally to the label
	JE	label	Jump to the label if the result of a compare shows the accumulator
			to be equal to the operand
	JG	label	Jump to the label if the result of a compare shows the accumulator
			to be greater than the operand
	JGE	label	Jump to the label if the result of a compare shows the accumulator
			to be greater than or equal to the operand
	JL	label	Jump to the label if the result of a compare shows the accumulator
			to be less than the operand
	JLE	label	Jump to the label if the result of a compare shows the accumulator
			to be less than or equal to the operand

Give two reasons why some software is still developed in an assembly	y language.
1	
2	•••••
	(2 marks)
	(2 marks)

(a)

(b) Using Table 2 below, complete the assembly language equivalent of the following.

Table 2

Opcode	Operand	Comment
DEFB		Declare variable X
DEFB		Declare variable COUNT
	DEFB	DEFB

(8 marks)

10

6

Figure 2

Assume a queue is implemented as a linked list using pointers as in **Figure 2**.

Give the **three** steps required to remove a node from the front of the queue and recover the memory space occupied by the node.

1	
2	
_	
3	
	(3 marks

A set of operations are defined to manipulate the contents of the queue. As well as Remove these include FrontItem and IsQueueEmpty.

Name another operation that would be essential to use this queue.	
	(1 mark)

- The queue could be implemented using an array instead of a linked list.
 - What additional operation will be required if the queue is implemented using an array?

(1 mark	()

Give **one** advantage of array implementation.

(1 mark)

(iii) Give **two** disadvantages of array implementation.

1	
2	
_	(2 marks

7 An integer array A contains the following items.

	A
[1]	3
[2]	5
[3]	11
[4]	12
[5]	18
[6]	21
[7]	26
[8]	29
[9]	32

The operator DIV performs integer division. x DIV y calculates how many times y divides exactly into x. For example 7 DIV 3 = 2.

(a) Dry run the following algorithm by completing the trace table, **Table 3**.

Table 3

Number	Lower	Upper	Current

Value returned	

(8 marks)

(b) What is the purpose of this algorithm?

 •••••

(1 *mark*)

8		programs executed within a Graphical User Interface (GUI) environment are <i>object-ted</i> and <i>event-driven</i> .
	(a)	Give an example of an event in this context.
		(1 mark)
	(b)	Describe how event-driven programs differ from non event-driven programs.
		(2 marks)
	(c)	List two features of an object.
		1
		2
	(d)	Name an object that might be part of a GUI.
		(1 mark)

END OF QUESTIONS

There are no questions printed on this page

There are no questions printed on this page