Surname			Othe	er Names				
Centre Number					Candidate Number			
Candidate Signature								

For Examiner's Use

General Certificate of Education January 2008 Advanced Subsidiary Examination

ASSESSMENT and

ALLIANCE

CPT1

COMPUTING
Unit 1 Computing Systems, Programming and Networking Concepts

Monday 14 January 2008 1.30 pm to 3.00 pm

You will need no other materials.
You may use a calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Answer the questions in the spaces provided.
- Show all your working.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The maximum mark for this paper is 65.
- The marks for questions are shown in brackets.
- The use of brand names in your answers will **not** gain credit.
- You are reminded of the need for good English and clear presentation in your answers.

For Examiner's Use						
Question	Mark	Question	Mark			
1		9				
2		10				
3						
4						
5						
6						
7						
8						
Total (Coli	umn 1)	-				
Total (Column 2)						
TOTAL	TOTAL					
Examiner'	Examiner's Initials					

Answer all questions in the spaces provided.

- **1 Table 1** lists some components of a computer system. Put **one** tick on each row to describe each component as either:
 - software
 - hardware
 - hardware and software.

Table 1

Component	Software	Hardware	Hardware and Software
An application program			
A printed circuit board which controls the wash programme inside a washing machine			
Main memory chips in the PC			

(3 marks)

2 You want to improve the performance of your PC by upgrading certain components, whilst retaining the same motherboard.

What upgraded/additional components would bring about the following improvements? Your components for parts (a), (b) and (c) **must** be different.

(a)	Increasing the speed at which application programs are executed.
	Component:
	Explanation:
	(2 marks)
(b)	Avoiding the need to continually archive picture and music files to CD storage.
	Component:
	Explanation:
	(2 marks)
(c)	Having several additional devices connected at the same time to your computer. For example, a digital camera and memory card reader.
	Component:
	Explanation:

6

(2 marks)

3 Figure 1 shows a very small part of a sound wave recorded through a microphone connected to a computer.

The dots each represent a recorded measurement of the sound w ave. The recorded measurements are stored in main memory shown in **Table 2**, with the first measurement stored in main memory location 700.

Question 3 continues on the next page

Turn over ▶

Table 2

Memory Address	Measurement
700	0001 0100
701	0011 1100
702	(e)
703	1011 1101
704	1110 0011
705	1111 0000
706	1101 1100
707	1010 0000
708	0111 0111
709	0110 0100

(a)		recording process takes place.	time
	1		
	2		marks)
(b)	(i)	Explain what is meant by the sampling rate .	manusy
		(1 mark)
	(ii)	Study Figure 1 and state what the sampling rate is for this recording.	
		(1000 milliseconds = 1 second).	
(c)	Stud	ly Table 2 . How many bits are allocated to each sample?	1
	•••••	((1 mark)
(d)	(i)	State one advantage of increasing the number of bits allocated to each samp	ple.
		(
	(ii)	State one disadvantage of increasing the number of bits allocated to each sa	ample.
			(1 mark)

11

(1 mark
In Table 2 each of the binary values represents part of a sound file. Give three other possible interpretations of one or more bytes held in main memory when the computer is being used for any application (excluding part of a picture or other media file).
1
2
3
(3 marks

Turn over for the next question

Turn over ▶

4 Figure 2 shows three different programs which have been developed using different generations of programming language.

	Figure 2	
Program 1	Program 2	Program 3
If Sales > 10000 Then BonusPayment :=True etc. etc. Procedure InputNewData Procedure ToOutputFile	Move #0, R1 Add R1, R2 Store R1, 0197 Move 0198, R3 Add R2, R3 Cmp R3, #1662 Bne 0988	1000 0101 1010 1111 1010 1111 1110 0001 1010 1111
etc	etc	etc
(b) Indicate which program was most	•	(1 mari
(ii) a payroll application.		(1 mark
		(1 mar
(c) Program 1, Program 2 and Progra	am 3 may require translation l	pefore each can be

executed.

Table 3

	Assembler	Compiler	None
Program 1			
Program 2	2		
Program 3	3		

Put one tick on each row in Table 3 to indicate the translator software required.

(3 marks)

9

	eribe how interpreter software enables a program written in a high level language executed.
	(2 marks)
	end gives you a copy of a freeware assembler . Why might you not be able to use successfully on your computer?
	(1 mark)
	are 3 shows some of the drawing objects available with a vector graphics drawing ware package.
	Figure 3
	Center drag Circle Blipse circle
	Right Cross Rectangle triangle
	Shadowed 3-D box Rounded box Pounded rectangle
	Rounded 45 degree 60 degree square single single
(i)	Name two properties which are common to Object 1 and Object 2.
	1
	2
(ii)	When a designer creates a drawing, the size of various objects is often increased/decreased/moved as the drawing is being developed.
	Explain why no distortion occurs in vector graphics when the size of various
	to be

Turn over ▶

(2 marks)

(iii)	With vector graphics software, each new drawing is created as a set of vectored objects. Each drawing is created and saved in a file format specific to that brand of software. The software has an 'export' facility so that a bitmapped version of any drawing can be produced which can then be used as appropriate e.g. included in a word processed document.
	Why is this arrangement preferable to bitmapped-based software which only

why is this arrangement preferable to bitmapped-based software which only creates and saves a bitmapped file?	
(1 mark,)

(b) Bitmapped software saves the picture as pixels, with a range of different possible colour resolutions as shown in **Figure 4**.

Figure 4

File name:	MyPicture ~	Save
Save as type:	24-bit Bitmap (*.bmp;*.dib)	Cancel
	Monochrome Bitmap (".bmp;".dib) 16 Color Bitmap (".bmp;".dib) 256 Color Bitmap (".bmp;".dib) 24-bit Bitmap (".bmp;".dib) JPEG (".JPG;".JPEG;".JPE;".JFIF) GIF (".GIF) TIFF (".TIF;".TIFF) PNG (".PNG)	

(i)	If the graphic is saved as shown as a '256 color bitmap', how many bytes will be used to store each pixel?
	(1 mark)
(ii)	A picture is downloaded from a camera-phone and saved as a '256 color bitmap'. The picture has a width of 1280 pix els and height 768 pix els.
	What is the file size in Kilobytes?
	(1 mark)
iii)	The same picture as in part (ii) is later loaded into bitmapped softw are on a PC and saved to a new file as a '16 color bitmap'.
	What is the size of this file in Kilobytes?
	(1 mark)

8

6	(a)	State	what is meant by serial transmission of data.
			(1 mark)
			(1 many
			Figure 5
			20003000000
	(b)	(i)	Figure 5 shows a port on the back of a PC which is used for the parallel transmission of data; typically between the PC and a printer.
			More than eight of the port lines are used during a data transfer.
			State two different uses for the lines.
			1
			2
		(ii)	When would it be inappropriate to use parallel data transmission, even when the communicating device has a parallel port?
			(1 mark)
	(c)	Defi	ne asynchronous data transmission.
		•••••	(1 mark)

Turn over ▶

5

- 7 Cars over three years old have to pass a roadworthy test called the MOT. Various categories are tested and for this question the y have been simplified to:
 - Brakes
 - Steering
 - Tyres
 - Bodywork.

A car passes the MOT test – in this simplified scenario – if it passes all four cate gories.

Data for a single car is stored as a string consisting of the digit characters '0' and '1' e.g. '1110'.

- '1' denotes a category pass
- '0' denotes a category fail.

The order of the categories is as shown above. For example, the data '1110' describes a car which passed on brakes, steering and tyres, but failed on bodywork.

The built-in function SingleCharacter is to be used in the algorithm which follows, and is described in the help files as follows:

```
SingleCharacter(ThisString : String; ThisPosition : Integer) : Char;
Returns the single character at position ThisPosition in the string ThisString.
```

E.g. Result := SingleCharacter('1110', 4) would return and assign '0' to Result.

The following incomplete algorithm is designed to calculate whether a single car has passed or failed.

The identifier list for variables used by the algorithm is shown in **Table 4**.

(a) Complete A, B and C in the algorithm.

(b) Complete the data types and comment - **D**, **E** and **F** - in **Table 4**.

The data types should be selected from those sho wn in **Table 5**.

Table 4

Variable	Data Type	Comment
Position	D	E
NextCar	String	Data for a single car
NextCategory	F	Data for a single category
CarFailed	Boolean	Result indicator

(3 marks)

Table 5

Data type	Explanation
Integer	Whole number
Real	Number with a fractional part
String	Zero or more characters
Char	Single character
Boolean	True/False values only

Turn over

																(1)
b)	The	compi	uter s	ystem	n also	store	s BC	D nu	mber	s usii	ng tw	o byt	es.			
	(i)	Show	v the	BCD	bit pa	atter n	for t	he de	nary	numb	er 19	5.				
	(1 mar															
	(ii)	The	follov	wing	is not	a val	id BC	CD re	prese	ntatio	n. Ez	xplair	n why	7.		
	1	0	0	0	0	0	0	1	1	0	1	0	0	1	0	0

A binary search tree is used by software to store and then search for user names on a Colle network.
The following are the first seven user names to join the tree:
PollardJ, AtkinsP, RogersG, AbbottJ, SearleF, CollinsK, RuddleA
(a) Sketch the tree structure.
(2 mar
(b) The tree is to be searched for various user names.
(i) The task is to search for the user name CollinsK . List in order the nodes visited
(1 ma
(ii) A second search is done to f ind the user name RuddleA . How many comparisons does this require?
(1 ma
Turn even for the next question

Turn over for the next question

Turn over ▶

- 10 A firm selling double glazing employs three sales staff. Each person is given a sales target for each of the four quarters of the year.
 - Quarter 1 January MarchQuarter 2 April June
 - Quarter 3 July September
 - Quarter 4 October December

Based on all the sales made, the data in **Table 6** is produced showing whether or not each sales person achieved their target sales for each quarter. Each value is stored as a single character 'Y' (sales target met) or 'N' (sales target not met).

The columns represent each quarter, each row represents a salesperson.

Table 6

	Target							
	[1]	[2]	[3]	[4]				
[1]	Y	N	Y	N				
[2]	N	N	Y	Y				
[3]	N	N	N	N				

(a) What data structure could be used in a programming language for organising the data shown in **Table 6**?

(1 mark)

(b) One of the data values in **Table 6** has been emboldened. What does this value represent?

(1 mark)

(c) The following algorithm processes the data shown in **Table 6**. Trace the execution of the algorithm by completing **Table 7**.

Table 7

Person	Quarter	Target[Person, Quarter]	[1]	NewA	rray [3]	[4]
	1					

(6 marks)

plain what numbers are being calculated and stored in the NewArray data structure.	

10

END OF QUESTIONS

There are no questions printed on this page

Do not write on this page

Copyright $\ensuremath{\mathbb{C}}$ 2008 AQA and its licensors. All rights reserved.

