A-level Computing

COMP3/Unit 3: Problem Solving, Programming, Operating Systems, Databases and Networking Mark scheme

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

To Examiners:

1. When to award ' 0 ' (zero) when inputting marks on CMI+: A mark of 0 should be awarded where a candidate has attempted a question but failed to write anything creditworthy. Insert a hyphen when a candidate has not attempted a question. By these two actions the Principal Examiner will be able to distinguish between the two (nothing credit worthy/unattempted) when analysing any statistics.
2. This mark scheme contains the correct responses which we believe that candidates are most likely to give. Other valid responses are possible to some questions and should be credited. Examiners should refer off mark scheme responses that they believe are creditworthy to a Team Leader.

The following annotation is used in the mark scheme:
; - means a single mark
II - means alternative response
I - means an alternative word or sub-phrase
A - means acceptable creditworthy answer
R - means reject answer as not creditworthy
NE - means not enough
I - means ignore
DPT - means "Don't penalise twice". In some questions a specific error made by a candidate, if repeated, could result in the loss of more than one mark. The DPT label indicates that this mistake should only result in a candidate losing one mark, on the first occasion that the error is made. Provided that the answer remains understandable, subsequent marks should be awarded as if the error was not being repeated'.

Qu	Part	Subpart	Marking Guidance			Marks	Comments
1	(a)		One mark per correct response.			4	
			Construct	Example	Valid ?		
			identifier	Player2name	No;		
			parameter	x, y :bool	Yes;		
			procedure-def	procedure square(s:real)	No;		
			procedure-def A alternative cl Y/N, True/Fals	procedure rect(w:int,h:int) ar indicators of Yes/ and Tick/Cross.			

$\mathbf{1}$	(b)	(i)	The <type> rule has an extra type char; The <procedure-def> rule does not allow a procedure without parameters // cannot be just an identifier;	$\mathbf{2}$	

| | | Accept answers comparing the figures the other
 way around, i.e. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| The type rule does not allow a char
 $\bullet \quad$The procedure does not have to have
 parameters / can be just an identifier | | |

$\mathbf{1}$	(b)	(ii)	Required as there can be a list of parameters // required as there can be more than one parameter; BNF does not support iteration // BNF can only achieve iteration through recursion // would need infinite number of rules otherwise // recursion allows for more than one parameter; MAX 1 A. Input for parameter NE. Rule needs to loop	$\mathbf{1}$	

$\mathbf{2}$	(d)	(i)	$0.025 / / 6.9-6.875 / / 1 / 40$ R. -0.025 A. award BOD mark if correct method has been shown i.e. 6.9-6.875 but candidate has then made an error performing the subtraction operation	$\mathbf{1}$	

2	(d)	(ii)	0.003623 // 0.025/6.9 // 1/276 A. 0.3623% A. answers rounded to at least two significant figures A. follow-through of incorrect answer to part 2di A. award BOD mark if correct method has been shown but candidate has then made an error performing the division operation R. if shown that incorrect method used e.g. dividing by 6.875, even though this arrives at an answer that is the same when written to 2 significant figures	$\mathbf{1}$	

$\mathbf{2}$	(d)	(iii)	Alternative 1: Adjust the mantissa; To use more bits; A. "longer" for "more bits" but R. "larger", "increase size" Alternative 2: Reallocate (one) bit; from the exponent to the mantissa; A. bits Alternative 3: Infer one of the two bits on either side of the binary point (from the other, as they must both be different); use the freed up bit to store one more significant digit in the mantissa/l use the freed up bit to represent mantissa more accurately;	$\mathbf{2}$	

$\mathbf{3}$	(a)	Serial send one bit at a time / after each other whereas parallel sends multiple bits simultaneously/at same time;		
A. "data" for "bits" in the context of parallel transmission Serial uses a single wire/cable/path/line whereas parallel uses several/multiple wires/cables/paths/lines; R. answers that refer to multiple channels achieved by sharing bandwidth Both sides of point must be made.	$\mathbf{2}$			

| $\mathbf{3}$ | (b) | Parity Bit: 1;
 Start bit, Stop Bit : Can be either 0 or 1, but must
 both be different to get mark; | $\mathbf{2}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- |

$\mathbf{3}$	(c)	Receiver and transmitter (clocks) do not need to be/are not (exactly) synchronised // transmission of data without use of external clock signal // receiver and transmitter clock only synchronised at start of/for length of transmission // start bit used to synchronise clocks of sender and receiver // data sent as soon as available rather than waiting for clock pulse/synchronisation symbol; NE data sent as soon as possible without waiting for receiver to be ready // receiver does not know when data will arrive	$\mathbf{1}$		

| $\mathbf{4}$ | (a) | $+;$
 $4,9,6 ;($ in any order) | $\mathbf{2}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- |

| 4 | (b) | A: Store the data/value (in the vertices/nodes);
 A. holds the expression
 B: Left pointer // points to the left child / left sub
 tree;
 C: Right pointer // points to the right child / right
 sub tree;
 A "indicates", "index" or other synonym for
 "points" / "pointer"
 R. Stores left/right subtree | $\mathbf{3}$ | |
| :---: | :---: | :--- | :--- | :--- | :--- |

| $\mathbf{4}$ | (c) | The node has no left child / sub tree;
 A there is nothing to the left
 A this is a null pointer | $\mathbf{1}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- |

$\mathbf{4}$	(e)	Post-order; A. Depth-first A. Depth-first search as BOD TO. Depth-first pre/in-order	$\mathbf{1}$	

| $\mathbf{4}$ | (f) | $(4+9 * 6$ in) Reverse Polish (Notation) // Postfix
 (Notation) // RPN; | $\mathbf{1}$ | |
| :--- | :--- | :--- | :--- | :---: | :---: |

| $\mathbf{5}$ | (a) | (i) | 192.168.0. x where \times is not 0 or $255 ;$
 Must be a specific IP address
 R. addresses that include port numbers | $\mathbf{1}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

| $\mathbf{5}$ | (a) | (ii) | 192.168.1.x where x is not 0 or 255;
 Must be a specific IP address
 R. addresses that include port numbers | $\mathbf{1}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

| $\mathbf{5}$ | (a) | (iii) | 192.168.1.y where y is not 0 or 255 and is not
 the same as x in (ii);
 Must be a specific IP address
 R. addresses that include port numbers | $\mathbf{1}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

| 5 | (b) | Bus (topology/network);
 A Line | $\mathbf{1}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- |

| $\mathbf{5}$ | (c) | $255.255 .255 .0 /$ FFFFFF00 /
 $11111111111111111111111100000000 ;$ | $\mathbf{1}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- |

5	(d)	(An operating system that is optimised to) provide (one or more specialised) services to (network) clients; A. description of examples of services e.g. logging on, sharing printers, but just the example of accessing files is not enough as this is in the question there needs to be additional explanation if files is used as an example, e.g. managing quotas, security of files. R. answers that imply that server does all processing i.e. confusion with thin client.	$\mathbf{1}$	

5	(e)	(i)	Use of Wired Equivalent Privacy/WEP/ WPA/WPA2/WiFi Protected Access; (Strong) encryption of transmitted data // use of Advanced Encryption Standard/AES; R encoding Use of Extensible Authentication Protocol/EAP; User/computer must enter/send a passphrase/certificate at start of communication before laptop allowed to connect; A key for passphrase A only allow password if used in correct context ie for accessing network, not for logging on to a sever or just having a password Access point checks MAC/hardware address of laptop and only allows computers with a MAC/hardware address in a list of approved addresses to connect; R IP address Disable broadcast of SSID/identity; Reduce /limit power of transmitter; Use of two/multi-factor authentication;	$\mathbf{1}$	

5	(e)	(ii)	Longer range // faster transmission speeds // higher bandwidth // more simultaneous connections; A. reverse of points e.g. "Bluetooth only has a short range" R. Bluetooth can only connect two devices at once	$\mathbf{1}$	

5	(g)		Any two points fro only needs to mak can be implied. Do sides of same poin A. non-routable IP cannot be connect outside network A. can identify loc address	the list below. Candidate one side of point, the other not award marks for two Non-Routable Many computers/devices may have same address. Not allocated centrally // allocated by a home user/company/ISP. Difficult/impossible to connect to over Internet // from outside of network. Owner cannot be looked up using WHOIS protocol addresses more secure as d to over Internet/from ion from a routable IP	2	

| $\mathbf{6}$ | (a) | Most efficient:$\mathrm{C} / / \mathrm{O}(\mathrm{n}) \mathrm{A} \cdot \mathrm{n}$
 $\mathrm{B} / / \mathrm{O}\left(\mathrm{n}^{2}\right) \mathrm{A} \cdot \mathrm{n}^{2}$
 Least efficient: $\mathrm{A} / / \mathrm{O}\left(\mathrm{a}^{\mathrm{n}}\right) \mathrm{A} \cdot \mathrm{a}^{\mathrm{n}}$ | $\mathbf{1}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- |

6	(b)	(i)	The problem can be solved; But not in polynomial time // only in exponential (or worse) time // it takes an unreasonable amount of time to do so // can't be solved quickly enough for it to be useful; A takes too long for a computer to solve but NE just takes a long time A "algorithm exists" for can be solved A answers relating to space rather than time TO of the solving mark, if states that can be solved in polynomial/reasonable time	2	

$\mathbf{7}$	(a)	(i)	$\mathbf{2} \mathrm{S}_{1}$ A. 1, State 1 $\mathbf{3} \mathrm{S}_{\mathrm{T}}$ A. T, State T Both answers correct to get mark;	$\mathbf{1}$	

$\mathbf{7}$	(a)	(ii)	$\delta\left(\mathrm{S}_{\mathrm{B}}, 0\right)=\left(\mathrm{S}_{0}, \mathrm{x}, \rightarrow\right) ;$ A. $0, \mathrm{x}, \rightarrow$ or $0\|\mathrm{x}\| \rightarrow$ R if additional rules listed I minor transcription errors e.g. missing,$(\delta$	$\mathbf{1}$	

\(\left.\begin{array}{|l|l|l|l|l|l|}\hline 7 \& (a) \& (iii) \& \begin{array}{l}\delta\left(\mathrm{S}_{\mathrm{R}}, \mathrm{x}\right)=\left(\mathrm{S}_{\mathrm{B}}, 0, \rightarrow\right) and \delta\left(\mathrm{S}_{\mathrm{R}}, \mathrm{y}\right)=\left(\mathrm{S}_{\mathrm{B}}, 1, \rightarrow\right) ;

A. x,, \rightarrow or \mathrm{x}|0| \rightarrow and \mathrm{y}, \mathrm{1}, \rightarrow or \mathrm{y}|1| \rightarrow

\mathbf{R} if additional rules listed

I minor transcription errors e.g. missing,(\delta\end{array} \& \mathbf{1}\end{array}\right]\)| |
| :--- |

		Must have correct tape contents and state for each mark A blank symbols instead of empty cells DPT If the read/write head is not drawn on some rows, this should result in the loss of the mark on the first occasion that it is missing only. Marks should be awarded for subsequent rows, even if the read/write head is not drawn.	

$\mathbf{7}$	(c)	(i)	Mark symbol currently being copied // to indicate how much of the string has been copied so far // to indicate where to return to (to copy next symbol); A. placeholders NE. x represents 0, y represents 1	$\mathbf{1}$	

$\mathbf{7}$	(c)	(ii)	Copy a string//copy a binary number // copy a bit pattern; A. Repeat	$\mathbf{1}$	

$\mathbf{8}$	(a)	Static structures have fixed (maximum) size whereas size of dynamic structures can change // Size of static structure fixed at compile-time whereas size of dynamic structure can change at run-time; Static structures can waste storage space/memory if the number of data items stored is small relative to the size of the structure whereas dynamic structures only take up the amount of storage space required for the actual data; Dynamic data structures (typically) require memory to store pointer(s) to the next item(s) which static structures (typically) do not need // Static structures (typically) store data in consecutive memory locations, which dynamic data structures (typically) do not; MAX 2 A just one side of points, other side is by implication NE. Dynamic data structures use pointers	$\mathbf{2}$	

$\mathbf{8}$	(b)	Not possible to simply insert item into middle of list; Must move all items that should come after the new process down in the array; NE move all data Moving items is time consuming; In a dynamic implementation, insertion achieved by adjusting pointers; MAX 2	$\mathbf{2}$	

| $\mathbf{8}$ | (c) | Priority (queue); | $\mathbf{1}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- |

$\mathbf{8}$	(d)	(i)	Memory allocated/deallocated at run-time/for new items (to dynamic data structure); (Provides a) pool of free/unused/available memory; NE to store new items MAX 1	$\mathbf{1}$	

$\mathbf{8}$	(d)	(ii)	(Memory) address // memory location // position in memory; NE position or location without reference to memory R index	$\mathbf{1}$	

| (d) | (iii) | OVERALL GUIDANCE:
 Solutions should be marked on this basis:
 - Up to 4 marks for correctly locating the
 position to insert the new process at.
 Up to 4 marks for creating a new node and
 storing the correct data into it and the
 associated pointers. Some marks can be
 awarded for this even if the locating process
 is incorrect/missing.
 The full 7 marks should only be awarded for a
 complete fully working solution. If any steps are
 missed out, then award a maximum of six marks
 (MAX 6).
 The addition of any unnecessary steps that do
 not stop the algorithm working should not result
 in a reduction in marks.
 Responses should be accepted in pseudo-code
 or structured English.
 If you are unsure about the correctness of a
 solution please refer it to a team leader. Also,
 responses in prose should be referred to
 team Ieaders.
 SPECIFIC MARKING PoINTS:
 Correctly locating insertion point (MAX 4): | 7 |
| :--- | :--- | :--- | :--- | :--- |

9	(a)	What means: every attribute (in relation) is dependent on the key; the whole key; and nothing but the key; R. Everything OR (relations) contain no repeating groups (of attributes) // data is atomic; no partial dependencies; no non-key dependencies; R No repeated columns/attributes/data OR every determinant (in the relation) is a candidate key;;	$\mathbf{4}$	

		MAX 2 Why important: Eliminate update anomalies; A Example Eliminate insertion anomalies; A Example Eliminate deletion anomalies; A Example Eliminate data inconsistency // improve consistency // avoid inconsistency problems; *Minimise data duplication // no unnecessary repeated data; A Reduce for minimise R eliminate *Eliminate data redundancy; A Reduce/minimise for eliminate NE Easier to update/insert/delete without concrete example or good explanation NE Less errors when updating/inserting/deleting without concrete example or good explanation NE Saving space/memory NE Easier to query Award marks to points made anywhere across 9(a) Can only award one of the two marks indicates by asterisks (*) MAX 2	

| 9 | (b) | One mark per correct relationship. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| MAX 2 if any incorrect relationships drawn
 MAX 3 | | |

9	(c)		FurnitureID INT PRIMARY KEY NOT NULL // FurnitureID INT Optional PRIMARY KEY(FurnitureID) FurnitureName $\operatorname{VARCHAR(30)~}$ Category VARCHAR(10) Price SMALLMONEY SupplierName VARCHAR(20) 1 mark for FurnitureID, with sensible data type and identified as primary key 1 mark for two other fields with sensible data types and lengths OR 2 marks for all four other fields with sensible data types and lengths A any sensible types. Lengths do not need to be specified.	3	Note that currency is not a valid SQL type Allow lengths after numeric types e.g. INT(11) as these are allowed in MySQL.

9	(d)		SELECT CustomerName, TelephoneNumber FROM Customer, CustomerOrder, CustomerOrderline WHERE FurnitureID=10765 AND Customer.CustomerID= CustomerOrder.CustomerID AND CustomerOrder.OrderID= CustomerOrderLine.OrderID ORDER BY CustomerName (ASC) 1 mark for correct two fields in SELECT clause 1 mark for correct three tables in FROM clause 1 mark for FurnitureID = 10765 1 mark for Customer.CustomerID = CustomerOrder.CustomerID, joined to other conditions with AND 1 mark for CustomerOrder.OrderID = CustomerOrderLine.OrderID, joined to other conditions with AND 1 mark for ORDER BY CustomerName, ASC is optional --- OR --- SELECT CustomerName, TelephoneNumber FROM Customer INNER JOIN CustomerOrder ON Customer.CustomerID=CustomerOrder.Custom erID INNER JOIN CustomerOrderLine ON CustomerOrder.OrderID=CustomerOrderLine.Or	6	

| | derID
 WHERE FurnitureID = 10765
 ORDER BY CustomerName (ASC)
 1 mark for correct two fields in SELECT clause
 1 mark for correct three tables in FROM clause
 1 mark for INNER JOIN using
 Customer.CustomerID=CustomerOrder.Custom
 erID
 1 mark for INNER JOIN using
 CustomerOrder.OrderID=CustomerOrderLine.Or
 derID
 1 mark for FurnitureID = 10765
 1 mark for ORDER BY CustomerName, ASC is
 optional
 Marks for SELECT and FROM statements
 should not be awarded if additional fields/tables
 included.
 Marks can be awarded for the conditions in the
 WHERE statement even if the required tables
 are not present in the FROM.
 Accept FurnitureID with no quotation marks,
 single quotation marks or double quotation
 marks.
 Accept table names before fieldnames.
 Accept use of Alias/AS command e.g. FROM
 Customer AS C then use of C as table name.
 Accept insertion of spaces into fieldnames
 Ignore unnecessary clause
 CustomerOrderLine.FurnitureID=Furniture.Furnti
 ureID
 I unnecessary brackets
 DPT for unnecessary punctuation - allow one
 semicolon at the very end of the statement, but
 not at the end of each clause.
 DPT for fieldname before table name.
 Refer responses using nested SQL queries to
 team leaders. |
| :--- | :--- | :--- |

| $\mathbf{9}$ | (e) | | One mark for tick in correct row. Do not award
 mark if more than one row is ticked. | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | Command | Correct? (Tick One) | | |
| ALTER TABLE | \checkmark | $\mathbf{1}$ | | | |
| CREATE FIELD | | | | | |
| | INSERT COLUMN | | | | |

UMS conversion calculator www.aqa.org.uk/umsconversion

