

General Certificate of Education (A-level) June 2011

Computing
COMP3
(Specification 2510)
Unit 3: Problem Solving, Programming,
Operating Systems, Databases and Networking

Final

Mark Scheme

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Mark Scheme - General Certificate of Education (A-level) Computing - Unit 3: Problem Solving, Programming, Operating Systems, Databases and Networking - June 2011

The following annotation is used in the mark scheme:
; - means a single mark
II - means alternative response
I - means an alternative word or sub-phrase
A - means acceptable creditworthy answer
R - means reject answer as not creditworthy
NE - means not enough
I - means ignore
DPT - in some questions a specific error made by a candidate, if repeated, could result in the loss of more than one mark. The DPT label indicates that this mistake should only result in a candidate losing one mark, on the first occasion that the error is made. Provided that the answer remains understandable, subsequent marks should be awarded as if the error was not being repeated.

| $\mathbf{2}$ | (a) | Interactive OS:
 User and computer in direct/two-way communication // User makes
 input to computer then waits for output before making next input;
 A system, software, program, OS for computer
 Network OS:
 (Layer of software that) redirects requests to remote resources; (A
 examples) in a way that is transparent to user;
 Must make one point about interactive and one point about
 network | Max
 $\mathbf{2}$ |
| :---: | :---: | :--- | :--- | :--- |
| $\mathbf{2}$ | (b) | Flow of program/execution sequence determined by events // program
 executes relevant code-handling block/procedure/sub-routine in
 response to events;
 Example of event such as clicking a button;
 Message sent to program when event occurs;
 System loop executes until application closes; this receives and
 processes messages // use of event-listener/handler;
 If several events occur they are queued; | Max
 $\mathbf{2}$ |

3	(a)	Mantissa Exponent $\mathbf{1}$ mark for correct mantissa $\mathbf{1}$ mark for correct exponent									
3	(b)	1 method mark for either: - showing correct value of both mantissa and exponent in denary - showing binary point shifted 2 places to right in binary number - indicating that final answer calculated using answer $=$ mantissa $\times 2^{\text {exponent }}$ 1 mark for correct answer [Mantissa $=-0.625 / /-5 / 8$ Exponent $=2$ Answer = -2.5 // -21/2									2
3	(c)	Mantissa Exponent $\mathbf{1}$ mark for correct mantıssa $\mathbf{1}$ mark for correct exponent									2
3	(d)	Maximises precision/accuracy for given number of bits; Note: Must have concept of given number of bits or an example of this e.g. word length. Unique representation of each number // simpler to test for equality of numbers;									2
3	(e)	Reduced precision; Increased range; A can represent larger/smaller numbers No effect on amount of memory required to represent a number;									$\begin{gathered} \operatorname{Max} \\ 2 \end{gathered}$

5	(a)		Reverse Polish Notation Equivalent Infix Expression $456+$ $45+6$ $R 6+45$ $1219+8 *$ $(12+19) * 8$ $R 12+19 * 8,(19+12) * 8$ $A \times f o r *$ 1 mark per correct expression A extra brackets around complete expressions	2
5	(b)		Simpler for a machine/computer to evaluate // simpler to code algorithm \mathbf{A} easier \mathbf{R} to understand Do not need brackets (to show correct order of evaluation/calculation); Operators appear in the order required for computation; No need for order of precedence of operators; No need to backtrack when evaluating; A RPN expressions cannot be ambiguous as BOD	1

Mark Scheme - General Certificate of Education (A-level) Computing - Unit 3: Problem Solving, Programming, Operating Systems, Databases and Networking - June 2011

5	(c)									6
			$\begin{gathered} \text { String } \\ \text { Pos } \end{gathered}$	Token	Integer Val	Op1	Op2	Result	Stack	
			0	-	-	-	-	-	\square	
			1	6	6				76	
			2	4	4				$7 \begin{aligned} & 4 \\ & 6\end{aligned}$	
			3	+		6	4	10	10	
			4	3	3				$7 \begin{gathered}3 \\ 10\end{gathered}$	
			5	2	2				$\left.\square \begin{array}{c}2 \\ 3 \\ 10\end{array}\right]$	
			6	+		3	2	5	$7 \begin{gathered}5 \\ 10\end{gathered}$	
			7	*		10	5	50		
			Output: $\underline{50}$ 1 mark for 1 mark for 1 mark for 1 mark for Values of award the incorrectly I values in	ch of row ows 4 and ws 6 and orrect fin 1 and O arks for tered pr mpty cells	1-3 5 together together output MUST be se rows. Th vious value even if they	ssign y ca are in	in ro ot be rrect	s, 6 and ferred frof	$7 \text { to }$	
5	(d)	```If StackArray is full Then Stack Full Error Else Increment TopOfStackPointer StackArray [TopOfStackPointer] ANumber EndIf 1 mark for appropriate If structure including condition (does not need both Then and Else) - Do not award this mark if ANumber is put into StackArray outside the If. 1 mark for reporting error in correct place 1 mark* for incrementing TopOfStackPointer 1 mark* for storing value in ANumber into correct position in array```	```If StackArray is full Then Stack Full Error Else Increment TopOfStackPointer StackArray [TopOfStackPointer] < ANumber EndIf 1 mark for appropriate If structure including condition (does not need both Then and Else) - Do not award this mark if ANumber is put into StackArray outside the If. \\ 1 mark for reporting error in correct place \\ 1 mark* for incrementing TopOfStackPointer \\ 1 mark* for storing value in ANumber into correct position in array```							

6	(a)		An abstraction / leaving out non-essential details // A mathematical representation of reality;	1
6	(b)	(i)	1 mark for naming or describing two pointers from this list: - Front/start/head pointer - Next node pointer - Previous node pointer - Rear/end/tail pointer R Next free space pointer 1 mark for stating the purpose of one of the pointers that have been named: - (Front/start/head pointer) to indicate where to remove items from // who should be served next // who is currently being served; NE to points to start of list - (Next node pointer) to link items in list together // to show order of list // so items can be inserted into middle of list // to traverse list; - (Previous node pointer) to link items in list together // to show order of list // so items can be inserted into middle of list // to traverse list backwards; - (Read/end/tail pointer) to indicate where to add new items to // so new people can be added to queue NE to point to end of list A Contextualised answers which refer to queue instead of list or adding people to a queue. \mathbf{R} Answers which clearly relate to the use of a fixed-size array	2
6	(b)	(ii)	Priority (queue);	1
6	(c)		Allow any reasonable example that would require randomness e.g. time next person joins queue, inter-person arrival time, time to be served, choice of meal, type (student/teacher) of next person to arrive; \mathbf{R} number of students/teachers/people in queue	1

Mark Scheme - General Certificate of Education (A-level) Computing - Unit 3: Problem Solving, Programming, Operating Systems, Databases and Networking - June 2011

7	(d)		Sequence of instructions / program / code; NE programming language Note: Do not award mark for program if candidate clearly means HTML which is executed/run/interpreted on the server (instead of the client); executed/run/interpreted when a web page is requested; to generate a web page (and its contents) which the server returns to the client // generating of dynamic web pages;	$\begin{gathered} \operatorname{Max} \\ 2 \end{gathered}$
7	(e)	(i)	MAX 1 point from this list: Retrieve ProductNumber and Quantity // retrieve values input by user; stores values in variables; \mathbf{R} responses that suggest these two commands are making the user input the values MAX 1 point from this list: from the web page/web site/form/web serve/bowser; using POST/GET methods;	$\begin{gathered} \operatorname{Max} \\ 2 \end{gathered}$
7	(e)	(ii)	Query/retrieve data from the products table; to retrieve the price of product being ordered/selected on form/product that has correct product number/product number in ProdNum; Store the set of records/data/price returned in ProdDetails;	$\begin{gathered} \operatorname{Max} \\ 2 \end{gathered}$
7	(e)	(iii)	To send/output the Total Price back to the web server/web browser/client; A display price on web page R sent to user/customer	1
7	(f)		---EITHER--- SELECT ProductNumber, ProductDescription, ProductPrice, Quantity FROM Product, OrderLine WHERE OrderNumber $=4013$ AND Product.ProductNumber = OrderLine.ProductNumber ORDER BY ProductNumber ASC 1 mark for SELECT clause with correct four fields 1 mark for FROM clause with correct two tables 1 mark for OrderNumber = 4013 1 mark for clause linking tables on the common field with no additional unnecessary clauses added 1 mark for ORDER BY ProductNumber, ASC is optional SELECT ProductNumber, ProductDescription, ProductPrice, Quantity FROM Product INNERJOIN OrderLine ON Product.ProductNumber $=$ OrderLine. ProductNumber WHERE OrderNumber $=4013$ ORDER BY ProductNumber ASC 1 mark for SELECT clause with correct four fields 1 mark for correct two tables in FROM clause 1 mark for INNERJOIN together with ON Product.ProductNumber = OrderLine.ProductNumber and no other joins 1 mark for OrderNumber $=4013$	

Mark Scheme - General Certificate of Education (A-level) Computing - Unit 3: Problem Solving, Programming, Operating Systems, Databases and Networking - June 2011

| | 1 mark for ORDER BY ProductNumber, ASC is optional
 In both solutions:
 Do not award mark for SELECT clause if extra attributes listed.
 Do not award mark for FROM clause if extra tables listed.
 Do not award mark for ORDER BY clause if order descending.
 Only award two marks for conditions if they are connected by AND.
 Otherwise just award one of the marks.
 If candidate appears to have written two queries e.g. there are two
 SELECT commands then mark the first query.
 A table names before fieldnames. i.e. TableName.FieldName
 A " or ' as delimiters for 4013
 A ascending, (ASC) for ASC
 R if ASC written before ProductNumber in ORDER BY
 I Spaces inserted into fieldnames e.g. Product Number
 Accept answers that candidates have surrounded by "ExecuteSQL()".
 If any of the errors listed below are made, they should result in at most
 one mark being lost. If the mistake is made more than once then on
 subsequent occasions, providing that the meaning is clear, the mistake
 should be ignored:
 - the addition of unnecessary punctuation such as semicolons
 the fieldname being written before the tablename | |
| :--- | :--- | :--- | :--- | :--- | :--- |

8	(a)	(i)	192.168.0. x where x is not 0 or 255;	1
8	(a)	(ii)	192.168.2. x where x is not 0 or 255 ;	1
8	(b)		255.255.255.0;	1
8	(c)		Reason: To reduce (network) congestion//improve throughput//to cut the number of collisions*; A faster operation/transmission; Explanation: by cutting the number of collisions*//by reducing the number of stations/computers connected to each section of cabling// because two computers in one segment can communicate at the same time as two computers in another segment; Note: * = Do not award two marks for cutting the number of collisions only award one for either reason or explanation. Reason: To improve security; Explanation: by localising packet transmission to one segment; Reason: To improve reliability; Explanation: By limiting effect of cable failure to one segment; Award marks for either: - one reason + explanation - two reasons - two explanations	$\begin{gathered} \operatorname{Max} \\ 2 \end{gathered}$
8	(d)	(i)	Less expensive as reduced cabling requirement; No reliance on central node as data does not all travel through one node; A less cabling required without reference to reduced cost if candidate has explained why less cables are needed A computer/station for node Must have explanation as well as advantage for mark	$\begin{gathered} \text { Max } \\ 1 \end{gathered}$

Mark Scheme - General Certificate of Education (A-level) Computing - Unit 3: Problem Solving, Programming, Operating Systems, Databases and Networking - June 2011

8	(d)	(ii)	Improved security as: data only travels down one link // is not sent throughout network // is not sent to all nodes; Improved reliability as if one link fails the other links/nodes are not affected; Speed of link remains constant // speed not affected by number of connections/collisions // faster connection as: no collisions/links not shared; A cable for link \mathbf{R} responses about terminal/computer failure Must have explanation as well as advantage for mark	Max 1
8	(e)		Below are some example security threats and measures, but they are only examples. Award marks for all reasonable security threats and appropriate measures. Threats: Threats must be described not simply named. Measures: Use a secure operating system Regularly install security patches/upgrades for software Use virus checking software + some explanation of what this will do Keep virus definitions up to date Use anti-spyware software + some explanation of what this will do Use of firewall to control traffic between private network and Internet // explanation of how firewall might work Use of spam filter in email package Enable web browser features to detect Pharming Restrictions on which websites users can visit White lists/black lists Enforce strong passwords Encryption of data during transmission Authentication of user/computer attempting remote login using digital certificate//smart card//security code generating device Log files Network manager keeps informed about latest threats // network manager trains users about threats Measures must be appropriate to security issues described. More than one measure can be used for the same threat.	

Mark Scheme - General Certificate of Education (A-level) Computing - Unit 3: Problem Solving, Programming, Operating Systems, Databases and Networking - June 2011

| | points made at the top of the mark scheme for this question.
 If a candidate meets the subject criterion in a band but does not meet
 the quality of language criteria then drop mark by one band, providing
 that at least 3 of the quality of language criteria are met in the lower
 band. If 3 criteria are not met then drop by two bands. | 6 |
| :--- | :--- | :--- | :--- | :---: |

$\mathbf{9}$	(a)	(i)	One or more a's followed by (a/one) b; A answers by example but must be at least ab, aab, aaab and show that the sequence continues.	$\mathbf{1}$	
$\mathbf{9}$	(a)	(ii)	The strings ab or b // zero or one a's followed by (a/one) b	$\mathbf{1}$	
$\mathbf{9}$	(a)	(iii)	A sequence of 0 or more occurrences of ab. A answers by example but must be at least the empty string, ab, abab, ababab and show that the sequence continues.	$\mathbf{1}$	
$\mathbf{9}$	(b)	(i)	Clai?re // Clare\|Claire A other valid possibilities e.g. Cla(ir\|r)e, Cl(air	ar)e A use of different types of brackets	$\mathbf{1}$
$\mathbf{9}$	(b)	(ii)	$10(0 \mid 1)^{\star 01}$ $\mathbf{1}$ mark for the 10 at the start and 01 at the end $\mathbf{1}$ mark for (Ol1)* in the middle to produce a correct expression A use of different types of brackets Award $\mathbf{2}$ marks for any other expression that would work	$\mathbf{2}$	

10	(a)		Number of signal changes per second // rate at which signals can change; A voltage changes for signal changes as BOD	1
10	(b)	(i)	Each signal level/signal change represents two bits (of data)/more than one bit (of data) // channel supports four/more than two different signal levels/voltages // use of modulation/coding technique e.g. phase modulation NE Send more than one bit at a time Must be clear that there are more than two signal levels	1
10	(b)	(ii)	Step Data/Request Sent 2 Printer indicates ready; A Yes, Ack 3 [Computer sends] data; 6 Printer indicates ready to receive further data; R job complete NE data received 1 mark per correct step	3
10	(c)		Baseband - whole bandwidth of medium dedicated to one channel at a time // only one computer can send data at a time // sends signals with frequencies from OHz to a maximum highest frequency. Suitable for LAN - lower cost electronic components (accept examples) // simpler hardware // good performance at low cost	

NE cheaper
Broadband - bandwidth of medium shared so multiple channels can be carried simultaneously // many computers can send data simultaneously // frequency bands assigned to different communications. TO multiple wires
Suitable for WAN - expensive to install/maintain communications media over long distance // many more devices/people needs to communicate // more cost effective to share medium.
How to award marks:
Mark Bands and Description

3-4 | To achieve a mark in this band, candidates must meet |
| :--- | :--- | the subject criterion (SUB) and 5 of the 5 quality of language criteria (QLx).

SUB Candidate has described both baseband and broadband and has explained accurately why at least one of these is appropriate to the context.
QL1 Text is legible.
QL2 There are few, if any, errors of spelling, punctuation and grammar. Meaning is clear.
QL3 The candidate has selected and used a form and style of writing appropriate to the purpose and has expressed ideas clearly and fluently.
QL4 Sentences and paragraphs follow on from one another clearly and coherently.
QL5 Appropriate specialist vocabulary has been used.
2 To achieve a mark in this band, candidates must meet the subject criterion (SUB) and 4 of the 5 quality of language criteria ($Q L x$).
SUB Candidate has described both broadband and baseband but may not have explained why they are suitable.
QL1 Text is legible.
QL2 There may be occasional errors of spelling, punctuation and grammar. Meaning is clear.
QL3 The candidate has, in the main, used a form and style of writing appropriate to the purpose, with occasional lapses. The candidate has expressed ideas clearly and reasonably fluently.
QL4 The candidate has used well-linked sentences and paragraphs.
QL5 Appropriate specialist vocabulary has been used.
1 To achieve a mark in this band, candidates must meet the subject criterion (SUB). The quality of language should be typified by the QLx statements.
SUB Candidate has only described one of baseband or broadband.
QL1 Most of the text is legible.
QL2 There may be some errors of spelling, punctuation and grammar but it should still be

| | QL3possible to understand most of the response.
 The candidate has used a form and style of
 writing which has many deficiencies. Ideas are
 not always clearly expressed.
 QL4
 Sentences and paragraphs may not always be
 well-connected or bullet points may have been
 used.
 Specialist vocabulary has been used
 inappropriately or not at all. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| OL5 Candidate has made no relevant points. | |
| Note: Even if English is perfect, candidates can only get marks
 for the points made at the top of the mark scheme for this
 question.
 If a candidate meets the subject criterion in a band but does not
 meet the quality of language criteria then drop mark by one
 band, providing that at least 3 of the quality of language criteria
 are met in the lower band. If 3 criteria are not met then drop by
 two bands. | 4 |

Mark Scheme - General Certificate of Education (A-level) Computing - Unit 3: Problem Solving, Programming, Operating Systems, Databases and Networking - June 2011

| $\mathbf{1 1}$ | (b) | Deletes two ones from the (right hand) end of the string //
 Subtracts two from a (unary) number;
 A bits for ones
 R end of tape for end of string
 NE deletes two ones | $\mathbf{1}$ |
| :---: | :---: | :--- | :--- | :---: |
| $\mathbf{1 1}$ | (c) | A Turing machine that can execute/simulate the behaviour of any other
 Turing machine // can compute any computable sequence;
 Faithfully executes operations on the data precisely as the simulated
 TM does; ; Note: Must have idea of same process)
 Description of/Instructions for TM (and the TM's input) are stored on
 the (Universal Turing machine's) tape // The UTM acts as an
 interpreter; A take any other TM and data as input
 Alternative definition:
 A UTM, U, is an interpreter that reads the description <M> of any
 arbitrary Turing machine M; and faithfully executes operations on data
 D precisely as M does.; The description <M> is written at the beginning
 of the tape, followed by D.; | Max |
| $\mathbf{2}$ | | | |

UMS conversion calculator www.aqa.org.uk/umsconversion

