

A-level Chemistry (7405/2)

Paper 2: Organic and Physical Chemistry

Specimen 2014

Session

2 hours

Materials

For this paper you must have:

- · the Data Booklet, provided as an insert
- a ruler
- a calculator.

Instructions

- Answer all questions.
- Show all your working.

Information

• The maximum mark for this paper is 105.

Please write clearly, in block capitals, to allow character computer recognition.																			
Centre number						(Car	ndic	late	nu	mb	er]				
Surname																			
Forename(s)]
Candidate signa	ature																		- ا

Barcode vo.1 7405/2

Answer all questions.

This question involves the use of kinetic data to deduce the order of a reaction and calculate a value for a rate constant.

The data in **Table 1** were obtained in a series of experiments on the rate of the reaction between compounds **A** and **B** at a constant temperature.

Table 1

Experiment	Initial concentration of A / mol dm ⁻³	Initial concentration of B / mol dm ⁻³	Initial rate / mol dm ⁻³ s ⁻¹
1	0.12	0.26	0.21×10^{-3}
2	0.36	0.26	1.89×10^{-3}
3	0.72	0.13	3.78×10^{-3}

Deduce the order of reaction with respect to A.

[1 mark]

Deduce the order of reaction with respect to B.

Deduce the order of reaction with respect to B.

[1 mark]

The data in **Table 2** were obtained in two experiments on the rate of the reaction between compounds **C** and **D** at a constant temperature.

Table 2

Experiment	Initial concentration of C / mol dm ⁻³	Initial concentration of D/ mol dm ⁻³	Initial rate / mol dm ⁻³ s ⁻¹
4	1.9 × 10 ⁻²	3.5×10^{-2}	7.2×10^{-4}
5	3.6 × 10 ⁻²	5.4 × 10 ⁻²	To be calculated

The rate equation for this reaction is

$$rate = k[\mathbf{C}]^2[\mathbf{D}]$$

0	1	3	Use the data from experiment $\bf 4$ to calculate a value for the rate constant, $\bf k$, at	t this
			temperature. Deduce the units of <i>k</i> .	
			[3 m	arksl

k = _____ Units = ____

0 1 . 4 Calculate a value for the initial rate in experiment 5. [1 mark]

Initial rate = $mol dm^{-3} s^{-1}$

Question 1 continues on the next page

0 1 . 5	The rate equation for a reaction is
	$rate = k[\mathbf{E}]$
	Explain qualitatively why raising the temperature by 10 °C has a much greater
	effect on the rate of the reaction than doubling the concentration of E . [3 marks]

2 Butadiene dimerises according to the equation

$$2C_4H_6 \longrightarrow C_8H_{12}$$

The kinetics of the dimerisation are studied and the graph of the concentration of a sample of butadiene is plotted against time. The graph is shown in **Figure 1**.

Figure 1

0 2 . **1** Draw a tangent to the curve when the concentration of butadiene is 0.0090 mol dm⁻³.

[1 mark]

0 2 . 2	Use this tangent to deduce the rate of the reaction, in mol dm ⁻³ s ⁻¹ , at this concentration of butadiene. [2 marks]							
	Rate of reaction = mol dm ⁻³ s ⁻¹							
0 2 . 3	The initial rate of reaction in this experiment has the value 4.57×10^{-6} mol dm ⁻³ s ⁻¹ .							
	Use this value, together with your answer from Question 2.2 , to deduce the order of the reaction with respect to butadiene. [3 marks]							
Turn over for the next question								

3		C_8H_{18}) is the common name for the brothly in car engines. The skeletal form	
		Figure 2	
0 3 .	1 Give the IU	PAC name for isooctane.	[1 mark]
0 3 .	_	olecular formula, write an equation for	the complete combustion of
	isooctane.		[1 mark]
0 3 .	3 Deduce the	number of peaks in the ¹³ C NMR spe	ctrum of isooctane. [1 mark]
Only one	answer is allov	ved.	
Complete	ely fill in the circ	le alongside the appropriate answer.	
CORRECT M	ETHOD • W	PRONG METHODS ♥ ● ♦ ♥	
If you wa	nt to change yo	our answer you must cross out your or	iginal answer as shown.
If you wis		n answer previously crossed out, ring	the answer you now wish to
	5		
	6	0	
	7		
	8	0	

Barcode

0 3 . 4	Isooctane can be formed, together with propene and ethene, in a reaction in which one molecule of an alkane that contains 20 carbon atoms is cracked. Using molecular formulas, write an equation for this reaction.								
	[1 mark]								
0 3 . 5	State why the reaction in Question 3.4 is an example of thermal cracking. [1 mark]								
0 3 . 6	Using molecular formulas, write equations to show the mechanism for the reaction of isooctane (C_8H_{18}) with chlorine. Include a termination step in which an organic compound is formed. [4 marks]								
0 3 . 7	Give an essential condition for the reaction of isooctane with chlorine. [1 mark]								
	Question 3 continues on the next page								

0 3 . 8	Deduce the number of monochloro isomers formed by isooctane. Draw the structure of the monochloro isomer that exists as a pair of optic	al
	isomers.	[2 marks]
	Number of monochloro isomers	
	Structure	
0 3 . 9	An isomer of isooctane reacts with chlorine to form only one monochloro compound.	
	Draw the skeletal formula of this monochloro compound.	
		[1 mark]

4	Alcohol A (CH ₃) ₂ CHCH(OH)CH ₃ undergoes reactions separately with acid potassium dichromate(VI) and with concentrated sulfuric acid.	ified
0 4 . 1	Give the IUPAC name for alcohol A .	[1 mark]
0 4 . 2	Give the structure of the organic product, ${\bf B}$, formed when ${\bf A}$ is oxidised in reaction with acidified potassium dichromate(VI).	the [1 mark]
0 4 . 3	Two isomeric alkenes, C and D , are formed when A is dehydrated in the rewith concentrated sulfuric acid. Name the mechanism for this dehydration reaction.	eaction [1 mark]
0 4 . 4	Draw the structure of each isomer. [Somer C Isomer D	2 marks]
0 4 . 5	Name the type of structural isomerism C and D show.	[1 mark]

	List alcohol A , product B and isomer C in order of increasing boiling poin Explain your answer.	t. [4 marks]
	Order of increasing boiling point	
	Explanation	
	Explanation	
	Draw the structure of the isomer of A which is not oxidised by acidified potassium dichromate(VI).	
		[1 mark]
0 4 . 8	Draw the structure of the isomer of A which cannot be dehydrated to form	m an
	alkene by reaction with concentrated sulfuric acid.	[1 mark]

Figure 3 shows a simplified representation of the arrangement of some amino acids in a portion of a protein structure in the form of an α -helix.

Figure 3

0	5		1	Name the type of protein structure in Figure	3
---	---	--	---	---	---

[1 mark]

0	5		2	Name the interaction represented by the dotted lines in Figure 3 and explain how
		•		the interaction arises.

[4 marks]

Name			
Explanation _			
·			

The tripeptide shown in **Figure 4** is formed from the amino acids glycine, threonine and lysine.

Figure 4

0 6 . 1 Draw a separate circle around **each** of the asymmetric carbon atoms in the tripeptide in **Figure 4**.

[1 mark]

0 6 . 2 Draw the zwitterion of glycine.

[1 mark]

0 6 . 3 Draw the structure of the species formed when glycine reacts with an excess of bromomethane.

[1 mark]

0 6 . 4 Give the IUPAC name of threonine.

[1 mark]

0 6 . 5 Draw the structure of the species formed by lysine at low pH.

[1 mark]

7	Repeating units of two	nolymers P and O	are shown in Figure 5.
1	repeating units of two	polymers, r and w,	are shown in rigure 3 .

Figure 5

0 7 . 1	Draw the structure of the monomer used to form polymer P.
	Name the type of polymerisation involved.

[2 marks]

Monomer

Type of polymerisation _

0 7 . 2 Draw the structures of **two** compounds that react together to form polymer Q. [2 marks]

Structure of compound 1

Structure of compound 2

Advantage	[3 mar
Explanation	
Turn over for the next question	
Turn over for the next question	
Turn over for the next question	
Turn over for the next question	
Turn over for the next question	
Turn over for the next question	
Turn over for the next question	
Turn over for the next question	

8 The anticancer drug cisplatin operates by reacting with the guanine in DNA.

Figure 6 shows a small part of a single strand of DNA. Some lone pairs are shown.

Figure 6

0 8 . 1 The DNA chain continues with bonds at X and Y.

State the name of the sugar molecule that is attached to the bond at X.

[1 mark]

Barcode

0 8 . 2 Figure 7 shows two more bases found in DNA.	
Figure 7	
HHN HHN [2-deoxyribose] cytosine adenine	
State which of these two bases pairs with the guanine in Figure 7 when two separate strands of DNA form a double helix. Explain how the base that you have chosen forms a base pair with guanine. [4 mark	:s]
	_ _ _

Question 8 continues on the next page

08.3	Cisplatin works because one of the atoms on guanine can form a co-ordinate bond with platinum, replacing one of the ammonia or chloride ligands. Another atom on another guanine can also form a co-ordinate bond with the same platinum by replacing another ligand. Explain how the action of cisplatin is able to stop the growth of cancer cells. [3 marks]

9 A possible synthesis of 1,4-diaminobenzene is shown in **Figure 8**.

Figure 8

0 9 . 1 A suitable reagent for step 1 is CH₃COCl

Name and draw a mechanism for the reaction in step 1.

[5 marks]

Name of mechanism _

Mechanism

0 9 . 2	The product of step 1 is purified by recrystallisation.
	Outline how you would carry out this purification technique and confirm that the dried product was pure.
	[6 marks]
0 9 . 3	In an experiment starting with 5.05 g of phenylamine ($M_r = 93.0$), 4.82 g of purified product were obtained in step 1.
	Calculate the percentage yield in this reaction. [3 marks]
	Percentage yield =%
	Question 9 continues on the next page

Figure 8 is repeated here to help you answer the following questions.

Figure 8

0	9		4	Identify the reagents	used in step 2
---	---	--	---	-----------------------	----------------

[2 marks]

0	9		5	Name a mechanism for the reaction in step 2
---	---	--	---	---

[1 mark]

0 9 . **6** Suggest the type of reaction occurring in step **3**.

[1 mark]

0 9 . 7	Identify the reagents used in step 4.	[1 mark]
	Turn over for the next question	

1 0	The relative integration values for the NMR peaks are shown on Figur	e 10.
	Deduce the structure of compound R by analysing Figure 9 and Figur Explain each stage in your deductions.	e 10.
	Use Table A and Table B on the Data Sheet.	
		[8 marks]
	Turn over for the next question	

11	The unsaturated compounds butanone and but-1-ene both react with compounds of the form HY (where Y is an atom or group of atoms) to form saturated products.
1 1 . 1	Suggest a reagent of the form HY that reacts with butanone. [1 mark]
1 1 . 2	Write an equation for the reaction in Question 11.1. [1 mark]
1 1 . 3	Explain why the product obtained is optically inactive. [3 marks]

1 1 . 4	Suggest a reagent of the form HY which reacts with but-1-ene.	[1 mark]
1 1 . 5	Draw a mechanism for the reaction in Question 11.4.	[4 marks]
1 1 . 6	Explain why the product obtained contains three isomers.	[3 marks]
	END OF QUESTIONS	

