

A-level Chemistry (7405/1)

Paper 1: Inorganic and Physical Chemistry

Specimen 2014

Session

2 hours

Materials

For this paper you must have:

- the Data Booklet, provided as an insert
- a ruler
- a calculator.

Instructions

- Answer all questions.
- Show **all** your working.

Information

• The maximum mark for this paper is 105.

Please write cle	arly, i	n bl	ock	ca	pita	ıls,	to	allo	w c	har	act	er (con	npu	ıter	rec	cog	niti	on.			
Centre number						(Car	ndic	late	nu	mb	er										
Surname																						
Forename(s)]
Candidate signa	ature																					- ا

Barcode vo.1 **7405/1**

Answer all questions.	
0 1 . 1 State the full electron configuration of phosphorus.	[1 mark]
O 1 . 2 Draw the shape of a PF ₃ molecule and predict the bond angle. [2 Shape	2 marks]
Bond angle I suppose the state of PF3 and the bond angle can be deduced using the expair repulsion theory. I suppose the state of PF3 and the bond angle can be deduced using the expair repulsion theory.	electron 4 marks]
0 1 . 4 State the full electron configuration of a cobalt(II) ion.	[1 mark]

0 1 . 5	State the shape of the complex cobalt ion, $[CoCl_4]^{2-}$ and state the bond angle. [2 marks]
	Shape
	Bond angle
0 1 . 6	Suggest one reason why electron pair repulsion theory cannot be used to predict the shape of the $[CoCl_4]^{2-}$ ion.
	[1 mark]
	Turn over for the next question

0 2 . 1	Explain why the atomic radii of the elements decrease across Period 3 from schlorine.	sodium to [2 marks]
0 2 . 2	Explain why the melting point of sulfur is greater than that of phosphorus.	[3 marks]
0 2 . 3	Explain, in terms of its bonding, why sodium oxide forms an alkaline solution reacts with water.	when it [2 marks]

0 2 . 4	Write an equation for the reaction of phosphorus(V) oxide with water.	[1 mark]
0 2 . 5		[1 mark]
0 2 . 6	Draw a diagram to show the shape of one of the phosphorus-containing species is a product of the reaction in Question 2.4 .	es that [1 mark]
	Turn over for the next question	

Table 1 contains some standard electrode potential data.

Table 1

Electrode half-equ	uation	E ^e / V
$F_2 + 2e^- \longrightarrow$	2F ⁻	+2.87
$Cl_2 + 2e^- \longrightarrow$	2Cl⁻	+1.36
$O_2 + 4H^+ + 4e^- \longrightarrow$	2H ₂ O	+1.23
$Br_2 + 2e^- \longrightarrow$	2Br ⁻	+1.07
$I_2 + 2e^- \longrightarrow$	2l ⁻	+0.54
$O_2 + 2H_2O + 4e^- \longrightarrow$	40H ⁻	+0.40
$SO_4^{2-} + 4H^+ + 2e^- \longrightarrow$	SO ₂ + 2H ₂ O	+0.17
2H ⁺ + 2e [−] →	H ₂	0.00
$4H_2O + 4e^- \longrightarrow$	4OH ⁻ + 2H ₂	-0.83

- 0 3 . 1 Use data from **Table 1** to deduce the halide ion that is the weakest reducing agent. [1 mark]
- 0 3 . 2 Use data from **Table 1** to explain why sulfate ions should **not** be capable of oxidising bromide ions.

[1 mark]

0 3 . 3 Write the conventional representation for the cell used to measure the standard electrode potential for reduction of bromine to bromide ions.

[1 mark]

0 3 . 4	Use data from Table 1 to calculate a value for the EMF of a hydrogen–oxygen fuel cell operating under alkaline conditions. [1 mark]
	EMF = V
0 3 . 5	Reduction takes place at the positive electrode of the hydrogen-oxygen fuel cell.
	State and explain the change in oxidation state that occurs at this electrode. [2 marks]
0 3 . 6	There are two ways to use hydrogen as a fuel for cars. One way is in a fuel cell to power an electric motor, the other is as a fuel in an internal combustion engine. Give the major advantage of using the fuel cell. [1 mark]
	Turn over for the next question

4	In the Haber process, nitrogen reacts with hydrogen in the presence of an iron
	catalyst. The process operates at a temperature of 500 °C and at a high pressure.

$$\frac{1}{2}$$
N₂(g) + $\frac{3}{2}$ H₂(g) \rightleftharpoons NH₃(g)

Some mean bond enthalpies are shown in Table 2.

Table 2

Bond	NEN	H–H	N–H
Mean bond enthalpy / kJ mol ⁻¹	944	436	388

0	4	1	Use data from Table 2 to calculate a value for the enthalpy of formation of ammonia.
		 '1	[3 marks]

Enthalpy of formation =	kJ mol ⁻¹

 $\boxed{ \mathbf{0} \quad \mathbf{4} }$. $\boxed{ \mathbf{2} }$ A data book value for the enthalpy of formation of ammonia is $-46.2 \text{ kJ mol}^{-1}$.

Suggest **one** reason why this value is different from your answer to Question **4.1**. **[1 mark]**

0 4 . 3	State Le Chatelier's principle. [1 mark]
0 4 . 4	Use Le Chatelier's principle to justify why the Haber process is carried out at a high pressure rather than at atmospheric pressure. [3 marks]
0 4 . 5	State why the iron catalyst in the Haber process may not be so effective if the nitrogen and hydrogen are impure. [1 mark]
	Question 4 continues on the next page

0	4	. 6	Use the following equation to write an expression for the equilibrium constant, the formation of ammonia.	<i>K</i> _c , for [1 mark]
			$\frac{1}{2}N_2(g) + \frac{3}{2}H_2(g) \iff NH_3(g)$	
0	4	. 7	In a laboratory experiment to simulate the Haber process, 1.0 mol of nitrogen a 3.0 mol of hydrogen were sealed into a container with a volume of 0.20 dm ³ . The yield of ammonia at equilibrium was 0.36 mol.	and
			Calculate a value for $\mathcal{K}_{\!\scriptscriptstyle \mathbb{C}}$	marks]
			•	
			$\mathcal{K}_{c} = $	

5	Table 3	contains some	entropy	data.

Table 3

Substance	N ₂ (g)	H ₂ (g)	NH ₃ (g)
Entropy (S ⁹) / J K ⁻¹ mol ⁻¹	192	131	193

$$\frac{1}{2}N_2(g) + \frac{3}{2}H_2(g) \rightleftharpoons NH_3(g) \Delta H = -46.2 \text{ kJ mol}^{-1}$$

0	5		1	Use information from Table 3 to calculate the entropy change for the formation	า of
		_		ammonia from its elements.	
				Give units with your answer.	
				F/	^

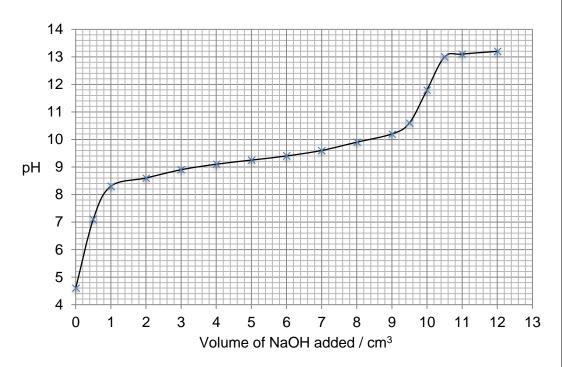
[2 marks]

Entropy change
$$\Delta S =$$
 _____ Units = ____

0 5 . 2 Use your answer to Question **5.1** and the enthalpy change given with the equation to calculate a value for the free-energy change of formation of ammonia at 500 °C. Give units with your answer.

[2 marks]

Free-energy change of formation
$$\Delta G =$$
 ______ Units = _____


	Calculate a value for the temperature when the formation of ammonia becomes feasible. [2 marks	3]
	Temperature =	K
0 5 . 4	Gaseous ammonia from the Haber process is liquefied before storage.	
	With the aid of a diagram showing the bonding between two molecules, explain why ammonia is easy to liquefy. [4 marks	3]
		_ _ _

Ammonium chloride, when dissolved in water, can act as a weak acid as shown by the following equation.

$$NH_4^+(aq) \rightleftharpoons NH_3(aq) + H^+(aq)$$

Figure 1 shows a graph of data obtained by a student when a solution of sodium hydroxide was added to a solution of ammonium chloride. The pH of the reaction mixture was measured initially and after each addition of the sodium hydroxide solution.

Figure 1

0 6 . 1 Suggest a suitable piece of apparatus that could be used to measure out the sodium hydroxide solution.

Explain why this apparatus is more suitable than a pipette for this purpose.

[2 marks]

Apparatus

Explanation

Barcode

	Use information from the curve in Figure 1 to explain why the end point of this would be difficult to judge accurately using an indicator.	reaction 2 marks]
06.3	The pH at the end point of this reaction is 11.8 Use this pH value and the ionic product of water, $K_w = 1.0 \times 10^{-14} \text{mol}^2 \text{dm}^{-6}$, t calculate the concentration of hydroxide ions at the end point of the reaction.	o 2 marks]
	The initial concentration of the ammonium chloride solution was 1.00 mol dm	
0 6 . 5	Use the pH of this solution, before any sodium hydroxide had been added, to a value for $K_{\!_{a}}$	
	$\mathcal{K}_{a}=$	mol dm ⁻³

Table 4 shows some successive ionisation energy data for atoms of three different elements ${\bf X},\,{\bf Y}$ and ${\bf Z}.$ 7

Elements X, Y and Z are Ca, Sc and V but not in that order.

Table 4

	First	Second	Third	Fourth	Fifth	Sixth
X	648	1370	2870	4600	6280	12 400
Υ	590	1150	4940	6480	8120	10 496
Z	632	1240	2390	7110	8870	10 720

	1	1		I			I
	Υ	590	1150	4940	6480	8120	10 496
	Z	632	1240	2390	7110	8870	10 720
For questions	7.1 and 7	7.2, only one	answer per	question is a	llowed.		
For each answ	er, comp	letely fill in th	ne circle alon	gside the ap	propriate ans	swer.	
CORRECT METHOD		WRONG METHODS		$\geqslant \phi $			
If you want to	change y	our answer y	ou must cros	ss out your o	riginal answe	er as shown.	
If you wish to ras shown.	return to a	an answer pr	eviously cros	ssed out, ring	g the answer	you now wis	sh to select
7 . 1	Which e	element is cal	lcium?				[1 mark
	X	0					
	Y	0					
	z	0					
7 . 2	Which e	element is var	nadium?				[1 mark
	X	0					
	Y	0					
	z	0					

Barcode

0 7 . 3	Explain how you identified vanadium from the ionisation energy data. [1 mark]
0 7 . 4	Explain why solutions containing calcium(II) ions are colourless whereas solutions that contain vanadium(II) ions are coloured. [4 marks] Why calcium(II) ions are colourless
	Why vanadium(II) ions are coloured
0 7 . 5	An acidified solution of NH_4VO_3 reacts with zinc. State the role of zinc in this reaction. Explain how observations from this reaction show that vanadium exists in at least two different oxidation states. [3 marks]

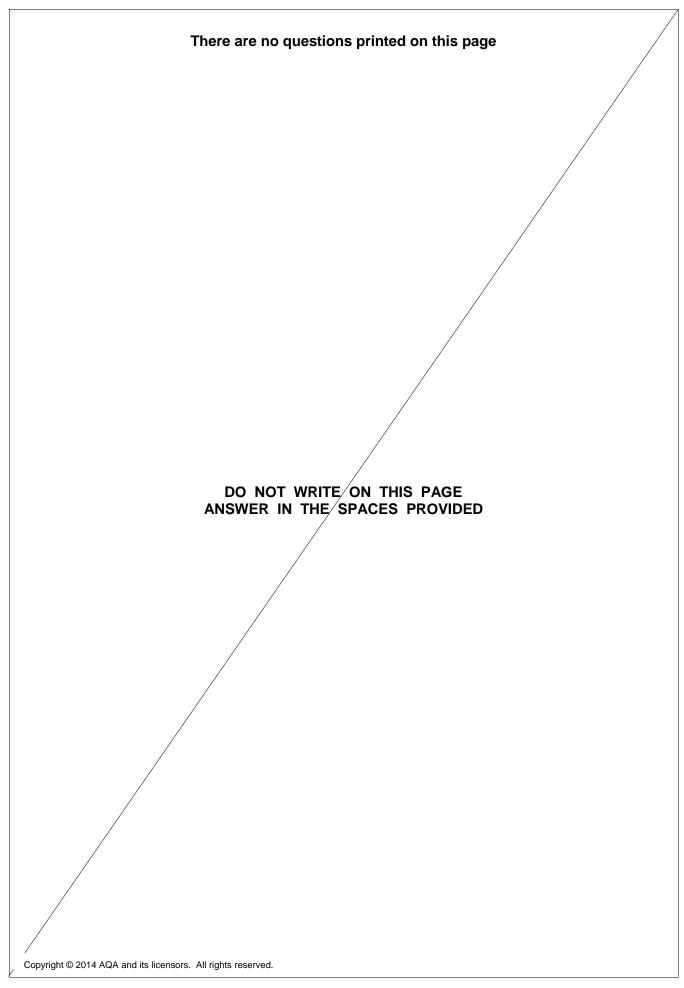
8	Aqueous copper(II) ions, [Cu(H ₂ O) ₆] ²⁺ , react with an excess of ammonia to ion [Cu(NH ₃) ₄ (H ₂ O) ₂] ²⁺ in which the water molecules are opposite each oth Describe what you would observe when dilute aqueous ammonia is added to excess, to an aqueous solution containing copper(II) ions.	
0 8 . 2	Draw a diagram to illustrate the shape of the $[Cu(NH_3)_4(H_2O)_2]^{2+}$ ion.	[1 mark]
0 8 . 3	State the name of the shape of the $[Cu(NH_3)_4(H_2O)_2]^{2+}$ ion.	[1 mark]
0 8 . 4	Give the value of the N–Cu–N bond angle.	[1 mark]

0 8 . 5	When the complex ion $[Cu(NH_3)_4(H_2O)_2]^{2+}$ reacts with 1,2-diaminoethane, the ammonia molecules but not the water molecules are replaced.
	Write an equation for this reaction. [1 mark]
08.6	Suggest why the enthalpy change for the reaction in Question 8.5 is approximately zero. [2 marks]
0 8 . 7	Explain why the reaction in Question 8.5 occurs despite having an enthalpy change that is approximately zero. [2 marks]

9	A 5.00 g sample of potassium chloride was added to 50.0 g of water initially at 20.0 °C. The mixture was stirred and as the potassium chloride dissolved, the temperature of the solution decreased.
0 9 . 1	Describe the steps you would take to determine an accurate minimum temperature that is not influenced by heat from the surroundings.
	[4 marks]
0 9 . 2	The temperature of the water decreased to 14.6 °C. Calculate a value, in kJ mol ⁻¹ , for the enthalpy of solution of potassium chloride.
	You should assume that only the 50.0 g of water changes in temperature and that the specific heat capacity of water is 4.18 J K ⁻¹ mol ⁻¹ . [4 marks]
	Enthalpy of solution =kJ mol ⁻¹

		1
0 9 . 3	The enthalpy of solution of calcium chloride is $-82.9 \text{ kJ mol}^{-1}$. The enthalpies of hydration for calcium ions and chloride ions are -1650 and -364 kJ mol^{-1} , respectively.	
	Use these values to calculate a value for the lattice enthalpy of dissociation of calcium chloride.	
		marks]
	Lattice enthalpy of dissociation =k	J mol ⁻¹
0 9 . 4	dissociation for magnesium chloride.	narks]

Table 5 shows observations of changes from some test-tube reactions of aqueous solutions of compounds **Q**, **R** and **S** with five different aqueous reagents. The initial colours of the solutions are not given.


Table 5

	BaCl ₂ + HCl	AgNO ₃ + HNO ₃	NaOH	Na ₂ CO ₃	HCl (conc)
Q	no change observed	pale cream precipitate	white precipitate	white precipitate	no change observed
R	no change observed	white precipitate	white precipitate, dissolves in excess of NaOH	white precipitate, bubbles of a gas	no change observed
s	white precipitate	no change observed	brown precipitate	brown precipitate, bubbles of a gas	yellow solution

1 0 . 1	Identify each of compounds Q , R and S . You are not required to explain your answers.	[6 marks]
	Identity of Q	
	Identity of R	
	Identity of S	

Barcode

1 0 . 2	Write simple ionic equations, with state symbols, for each of the positive observations with ${\bf S}$.
	[4 marks]
	END OF QUESTIONS

