Surname			Other	Names				
Centre Number				Candida	ate Number			
Candidate Signature						-	-	

General Certificate of Education January 2005 Advanced Level Examination

CHEMISTRY Unit 6a Synoptic Assessment

CHM6/W

CHM6/

www.theallpa

Tuesday 25 January 2005 Afternoon Session

In addition to this paper you will require:

- an objective test answer sheet;
- a black ball-point pen;
- a calculator.

Time allowed: 1 hour

Instructions

- Use a black ball-point pen. Do not use pencil.
- Fill in the boxes at the top of this page.
- Answer all 40 questions.
- For each item there are four responses. When you have selected the response which you think is the best answer to a question, mark this response on your answer sheet.
- Mark all responses as instructed on your answer sheet. If you wish to change your answer to a question, follow the instructions on your answer sheet.
- Do all rough work in this book, **not** on your answer sheet.
- Make sure that you hand in **both** your answer sheet **and** this question paper at the end of this examination.
- The Periodic Table/Data Sheet is provided on pages 3 and 4. Detach this perforated sheet at the start of the examination.

Information

- The maximum mark for this paper is 40.
- Each correct answer will score one mark. No deductions will be made for wrong answers.
- This paper carries 10 per cent of the total marks for Advanced Level.
- The following data may be required. Gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

Advice

• Do not spend too long on any question. If you have time at the end, go back and answer any question you missed out.

WWW XTREMEPHPERS NET

NO QUESTIONS APPEAR ON THIS PAGE

APW/0105/CHM6/W

WWW_XTREMEPAPERS_NET www.theallpapers.com

■ The atomic numbers and approximate relative atomic masses shown in the table are for use in the examination unless stated otherwise in an individual question.

0	4.0 He Helium	20.2 Ne	ne Neon 10	39.9 Ar	ne Argon 18	83.8 Kr	ne Krypton 36	131.3 Xe	e Xenon	54	222.0 Rn	ne Radon 86			175.0 Lu	um Lutetium 71	(260) Lr	um Lawrencium. 103
II>		19.0 T	n Fluorir 9	^{35.5} CI	r Chlorir 17	79.9 Br	m Bromir 35	126.9	n lodiné	53	210.0 At	m Astatir 85			173.0 Yb	n Ytterbiu 70	(259) No	um Nobeliu 102
5		16.0 0	Oxyger 8	^{32.1} S	us Sulphu 16	79.0 Se	Seleniur 34	127.6 Te	/ Telluriur	25	210.0 Po	Poloniur 84			168.9 Tm	Thulium 69	(258) Md	Mendeleviu 101
>		14.0 N	Nitrogen 7	31.0 P	Phosphoru 15	74.9 As	n Arsenic 33	121.8 Sb	Antimon	51	209.0 Bi	Bismuth 83			167.3 Er	Erbium 68	(257) Fm	100 Fermium
2		12.0 C	Carbon 6	28.1 Si	Silicon 14	72.6 Ge	Germaniun 32	118.7 Sn	L L L	50 22-2	207.2 Pb	Lead 82			164.9 Ho	Holmium 67	(252) Es	Einsteinium 99
≡		10.8 B	Boron 5	27.0 AI	Aluminium 13	69.7 Ga	Gallium 31	114.8 In	Indium	49	204.4 TI	Thallium 81			162.5 Dv	Dysprosium 66	252.1 Cf	Californium 98
						65.4 Zn	Zinc 30	112.4 Cd	Cadmium	48	200.6 Hg	Mercury 80			158.9 Tb	Terbium 65	247.1 BK	Berkelium 97
						63.5 Cu	Copper 29	107.9 Ag	Silver	4/	197.0 Au	Gold 79			157.3 Gd	Gadolinium 64	247.1 Cm	Curium 96
						58.7 Ni	Nickel 28	106.4 Pd	Palladium	46	195.1 P	Platinum 78			152.0 Eu	Europium 63	243.1 Am	Americium 95
						58.9 Co	Cobalt 27	102.9 Rh	Rhodium	45	192.2 Ir	Iridium 77			150.4 Sm	Samarium 62	239.1 Pu	Plutonium 94
						55.8 Fe	Iron 26	101.1 Ru	Ruthenium	44	190.2 Os	Osmium 76			144.9 Pm	Promethium 61	237.0 Np	Neptunium 93
		-6.9 Li	Lithium - 3			54.9 Mn	Manganese 25	98.9 Tc	Technetium	43	186.2 Re	Rhenium 75			144.2 Nd	Neodymium 60	238.0 U	Uranium 92
		ass —				52.0 Cr	Chromium 24	95.9 Mo	Molybdenum	42	183.9 V	Tungsten 74			140.9 Pr	Praseodymium 59	231.0 Pa	Protactinium 91
		atomic m	umber –			50.9 <	Vanadium 23	92.9 Nb	Niobium	41	180.9 Ta	Tantalum 73			140.1 Ce	Cerium 58	232.0 Th	Thorium 90
	Key	relative a	atomic r			47.9 Ti	Titanium 22	91.2 Zr	Zirconium	40	178.5 Hf	Hafnium 72						
						45.0 Sc	Scandium 21	88.9	Yttrium	39	138.9 La	Lanthanum 57 *	227 Ac	Actinium 89 †	:	anides		Ides
=		9.0 Be	Beryllium 4	24.3 Mg	Magnesium 12	40.1 Ca	Calcium 20	87.6 Sr	Strontium	38	137.3 Ba	Barium 56	226.0 Ra	Radium 88		1 Lanthé		U3 ACIIII
-	1.0 Hydrogen	6.9 Li	Lithium 3	23.0 Na	Sodium 11	39.1 K	Potassium 19	85.5 Rb	Rubidium	3/	132.9 Cs	Caesium 55	223.0 Fr	Francium 87		./ – 8C °	00 +	1 - 06 L
	win		ľ_X	TR	EI	VI	P	#P	E	R	5.	NE	1	ww	w.the	allpa	per	s.co

 \oplus

CHM6/W pgs 1-20 5/11/04 8:35 am Page 3

APW/0105/CHM6/W

Table 1 Proton n.m.r chemical shift data

Type of proton	ð/ppm
RCH ₃	0.7–1.2
R ₂ CH ₂	1.2–1.4
R ₃ CH	1.4–1.6
RCOCH ₃	2.1–2.6
ROCH ₃	3.1–3.9
RCOOCH ₃	3.7–4.1
ROH	0.5–5.0

Table 2	
Infra-red absorption data	

Bond	Wavenumber/cm ⁻¹
С—Н	2850-3300
C—C	750-1100
C=C	1620–1680
C=0	1680–1750
С—О	1000-1300
O—H (alcohols)	3230-3550
O—H (acids)	2500-3000

WWW_XTREMEPAPERS_NET www.theallpapers.com

5

Multiple choice questions

Each of Questions 1 to 20 consists of a question or an incomplete statement followed by four suggested answers or completions. You are to select the most appropriate answer in each case.

Questions 1 and 2

Questions 1 and 2 are about the reaction given below.

 $CO(g) + H_2O(g) \implies CO_2(g) + H_2(g)$

Enthalpy data for the reacting species are given in the table below.

Substance	CO(g)	$H_2O(g)$	CO ₂ (g)	H ₂ (g)
$\Delta H_{\rm f}^{\Theta}/{\rm kJmol}^{-1}$	-110	-242	-394	0

1 The standard enthalpy change for this reaction of carbon monoxide and steam is

- \mathbf{A} +42 kJ mol⁻¹
- **B** -42 kJ mol^{-1}
- $C + 262 \text{ kJ mol}^{-1}$
- \mathbf{D} -262 kJ mol⁻¹

2 Which one of the following statements is **not** correct?

- **A** The value of K_p changes when the temperature changes.
- **B** The activation energy decreases when the temperature is increased.
- **C** The entropy change is more positive when the water is liquid rather than gaseous.
- **D** The enthalpy change is more positive when the water is liquid rather than gaseous.

WWW_XTREMEPAPERS

Turn over

3 Use the information below to answer this question.

$C(s) + O_2(g) \rightarrow CO_2(g)$	$\Delta H^{\ominus} = -394 \mathrm{kJ}\mathrm{mol}^{-1}$
$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(l)$	$\Delta H^{\ominus} = -286 \mathrm{kJ}\mathrm{mol}^{-1}$
$4\mathrm{C}(\mathrm{s}) + 5\mathrm{H}_2(\mathrm{g}) \ \longrightarrow \ \mathrm{C}_4\mathrm{H}_{10}(\mathrm{g})$	$\Delta H^{\ominus} = -126 \mathrm{kJ}\mathrm{mol}^{-1}$

The standard enthalpy of combustion of butane, in $kJmol^{-1}$, is

A –2880

B –2590

C –806

- **D** –554
- 4 Chlorine has two isotopes, 35 Cl and 37 Cl. The number of molecular ion peaks in the mass spectrum of a sample of Cl₂ is
 - **A** 2
 - **B** 3
 - **C** 4
 - **D** 5
- 5 Which one of the following statements is **not** correct?
 - **A** The first ionisation energy of iron is greater than its second ionisation energy.
 - **B** The magnitude of the lattice enthalpy of magnesium oxide is greater than that of barium oxide.
 - C The oxidation state of iron in $[Fe(CN)_6]^{3-}$ is greater than the oxidation state of copper in $[CuCl_2]^-$

NWW_XTREMEPHPERS_NET

www.theallpapers.com

D The boiling point of C_3H_8 is lower than that of CH_3CH_2OH

Questions 6 and 7

In questions 6 and 7 consider the data below.

	<i>E</i> [⇔] /V
$\mathrm{Ag}^{+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{s})$	+0.80
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$	0.00
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13

- 6 The e.m.f. of the cell $Ag(s)|Ag^{+}(aq)||Pb^{2+}(aq)|Pb(s)$ is
 - A 0.93 V
 - **B** 0.67 V
 - C = -0.67 V
 - $\boldsymbol{D} = -0.93 \ V$
- 7 The e.m.f. of the cell $Pt(s)|H_2(g)|H^+(aq)||Ag^+(aq)|Ag(s)$ would be increased by
 - **A** increasing the concentration of $H^+(aq)$.
 - **B** increasing the surface area of the Pt electrode.
 - **C** increasing the concentration of $Ag^+(aq)$.
 - **D** decreasing the pressure of $H_2(g)$.

TURN OVER FOR THE NEXT QUESTION

Turn over

www.theallpapers.com

WWW_XTREMEPAPERS_NET

- 8 Which one of the following reactions will not occur?
 - $\mathbf{A} \qquad \mathrm{Al}(\mathrm{OH})_3(\mathrm{s}) + 3\mathrm{OH}^-(\mathrm{aq}) \rightarrow [\mathrm{Al}(\mathrm{OH})_6]^{3-}(\mathrm{aq})$
 - $\mathbf{B} \qquad \mathrm{Al}(\mathrm{OH})_3(\mathrm{s}) + 3\mathrm{H}^+(\mathrm{aq}) + 3\mathrm{H}_2\mathrm{O}(\mathrm{l}) \rightarrow [\mathrm{Al}(\mathrm{H}_2\mathrm{O})_6]^{3+}(\mathrm{aq})$
 - $\mathbf{C} \qquad 8\mathrm{HBr}(g) + \mathrm{H}_2\mathrm{SO}_4(l) \rightarrow 4\mathrm{Br}_2(g) + \mathrm{H}_2\mathrm{S}(g) + 4\mathrm{H}_2\mathrm{O}(l)$
 - **D** AgBr(s) + 2S₂O₃²⁻(aq) \rightarrow [Ag(S₂O₃)₂]³⁻(aq) + Br⁻(aq)
- 9 A 0.0720 g sample of reducing agent **R** was dissolved in water and acidified with an excess of dilute H_2SO_4 . The resulting solution was found to react with exactly 18.0 cm^3 of a 0.0200 mol dm⁻³ solution of KMnO₄.

In this reaction, 5 mol of **R** react with 3 mol of KMnO₄. The M_r of **R** is

- **A** 120
- **B** 167
- **C** 240
- **D** 333

10 Which one of the following pairs forms a white precipitate when mixed?

IWW_XTREMEPHPERS.

- **A** NaCl(aq) and NaOH(aq)
- **B** CuSO₄(aq) and BaCl₂(aq)
- **C** KF(aq) and AgNO₃(aq)
- **D** CoCl₂(aq) and Na₂CO₃(aq)

11 A disproportionation reaction occurs when a species \mathbf{M}^+ spontaneously undergoes simultaneous oxidation and reduction.

9

$$2M^+(aq) \rightarrow M^{2+}(aq) + M(s)$$

The table below contains E^{\ominus} data for copper and mercury species.

	<i>E</i> [⇔] /V
$\mathrm{Cu}^{2+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Cu}^{+}(\mathrm{aq})$	+ 0.15
$\mathrm{Cu}^+(\mathrm{aq}) + \mathrm{e}^- \rightarrow \mathrm{Cu}(\mathrm{s})$	+ 0.52
$\mathrm{Hg}^{2+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Hg}^{+}(\mathrm{aq})$	+ 0.91
$\mathrm{Hg}^{+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Hg}(\mathrm{l})$	+ 0.80

Using these data, which one of the following can be predicted?

- **A** Both Cu(I) and Hg(I) undergo disproportionation.
- **B** Only Cu(I) undergoes disproportionation.
- **C** Only Hg(I) undergoes disproportionation.
- **D** Neither Cu(I) nor Hg(I) undergoes disproportionation.

WWW_XTREMEPAPERS

12 The vanadium does **not** have an oxidation state of +3 in

A
$$[V(H_2O)_6]^{3+}$$

- **B** $[V(C_2O_4)_3]^{3-}$
- $\mathbf{C} \qquad [V(OH)_3(H_2O)_3]$
- $\mathbf{D} [VCl_4]^{3-}$

Turn over

- 13 In which one of the following mixtures does a redox reaction occur?
 - A ethanal and Tollens' reagent
 - **B** ethanoyl chloride and ethanol
 - **C** ethanal and hydrogen cyanide
 - **D** ethanoic acid and sodium hydroxide
- 14 The percentage by mass of carbon is 83.3% in
 - A propane.
 - **B** butane.
 - **C** pentane.
 - **D** hexane.
- 15 Propanone can be reduced to form an alcohol. A functional group isomer of the alcohol formed is
 - A CH₃CH₂CH₂OH
 - B CH₃CH₂CHO
 - C CH₃OCH₂CH₃
 - D CH₃COCH₃
- **16** Propanoic acid reacts with methanol in the presence of a small amount of concentrated sulphuric acid. The empirical formula of the ester formed is

WWW XTREMEPAPERS NET www.theallpapers.com

- A CH_2O
- $\mathbf{B} \qquad C_2 H_6 O_2$
- $\mathbf{C} = \mathbf{C}_2 \mathbf{H}_4 \mathbf{O}_2$
- $\mathbf{D} = C_2 H_4 O$

Questions 17 to 20

Questions 17 to 20 are about the following reaction scheme which shows the preparation of polymer P.

17 Which one of the following statements is **not** correct?

- **A** The conversion of benzene into **J** is alkylation.
- **B** The mechanism for the conversion of benzene into **J** is electrophilic substitution.
- **C** The conversion of **K** into **L** is oxidation.
- **D** The conversion of **L** into **M** is oxidation.

18 If 1.0 kg of benzene gave 0.98 kg of J, the percentage yield of J was

- **A** 64
- **B** 66
- **C** 68
- **D** 70

19 K is a weak acid with a p K_a of 9.95. The pH of a 0.10 mol dm⁻³ solution of **K** is

N_XTREMEPH

- **A** 4.48
- **B** 4.98
- **C** 5.48
- **D** 5.98

Turn over

20 Polymer **P** is formed in a two-step reaction from **N**. The first stage is a neutralisation reaction. The volume, in cm³, of a 0.20 mol dm^{-3} solution of H₂NCH₂CH₂NH₂ required to neutralise 6.8×10^{-3} mol of the acid **N** is

WWW_XTREMEPAPERS_NET www.theallpapers.com

- **A** 17
- **B** 34
- **C** 68
- **D** 136

12

Multiple completion questions

For each of Questions **21** to **40**, **one or more** of the options given may be correct. Select your answer by means of the following code.

A	if 1 , 2 and 3 only are correct.	Directions summarised						
B	if 1 and 3 only are correct.	Α	В	С	D			
С	if 2 and 4 only are correct.	1, 2 and 3	1 and 3 only	2 and 4 only	4 only			
D	if 4 only is correct.	only correct	correct	correct	correct			

Questions 21 and 22

In the presence of a catalyst, methanol can be synthesised from carbon monoxide and hydrogen according to the equation

 $CO(g) + 2H_2(g) \implies CH_3OH(g)$

Thermodynamic data are given below.

Substance	$\Delta \boldsymbol{H_{f}^{\Theta}}/\mathrm{kJmol}^{-1}$	$S^{\ominus}/JK^{-1}mol^{-1}$
CO(g)	-110	198
$H_2(g)$	0	131
$CH_3OH(g)$	-201	240

- 21 Correct statements about this reaction at 300 K include
 - 1 the standard enthalpy change is -91 kJ mol^{-1} .
 - 2 the standard entropy change is $-220 \,\mathrm{J}\,\mathrm{K}^{-1}\,\mathrm{mol}^{-1}$.
 - 3 the standard free-energy change is -25 kJ mol^{-1} .
 - 4 the reaction is not feasible at temperatures below 42 K.
- 22 The yield of this reaction is increased by
 - 1 a decrease in pressure.
 - 2 liquefying the product.
 - 3 the addition of a catalyst.
 - 4 a decrease in temperature.

Turn over

APW/0105/CHM6/W

WW XTREMEPAPERS NET WWW

Directions summarised							
A B C D							
1, 2 and 3 only correct	1 and 3 only correct	2 and 4 only correct	4 only correct				

23 Processes accompanied by a decrease in entropy include

- 1 the formation of ammonia from nitrogen and hydrogen.
- 2 the melting of ice.
- 3 the formation of N_2O_4 gas from NO_2 gas.
- 4 the reaction of ethanedioate ions with $Cu^{2+}(aq)$ ions.
- 24 Correct statements include
 - 1 Na atoms are larger than Mg atoms.
 - 2 Mg^{2+} ions are smaller than Na^{+} ions.
 - **3** S atoms are larger than Cl atoms.
 - 4 Cl^{-} ions are larger than S^{2-} ions.
- **25** Consider the following conversion.

$$\begin{array}{cccc} H_{3}C & O & H_{3}C & O \\ H_{3}C - C & -C & -OH(l) + CH_{3}OH(l) & \rightarrow & H_{3}C - C & -OCH_{3}(l) + H_{2}O(l) \\ H_{3}C & & H_{3}C & \\ T & & U \end{array}$$

Correct statements about this conversion include

- 1 the entropy change in the reaction is likely to be small.
- 2 the enthalpy change in the reaction is likely to be small.
- 3 the reaction is catalysed by acids.
- 4 if 1 g of **T** gives 1 g of **U** the yield for the conversion is 100%.

IWW XTREMEPAPERS NET

Directions summarised			
Α	В	С	D
1, 2 and 3 only correct	1 and 3 only correct	2 and 4 only correct	4 only correct

26 Redox reactions include

- $1 \qquad 2CrO_4^{2-} + 2H^+ \rightarrow Cr_2O_7^{2-} + H_2O$
- $2 \qquad Cl_2 + 2OH^- \rightarrow Cl^- + ClO^- + H_2O$
- $3 \qquad I^- + H_2 SO_4 \ \longrightarrow \ HI + HSO_4^-$
- 4 $S_2O_8^{2^-} + 2I^- \rightarrow I_2 + 2SO_4^{2^-}$
- 27 Substances that form an alkaline solution in water include
 - **1** P₂O₅
 - **2** CaO
 - **3** HOCH₂CH₂OH
 - 4 CH₃NH₂
- **28** For which of the following substances will 0.125 mol of oxygen be enough for complete combustion?
 - **1** 0.21 mol of magnesium
 - **2** 0.19 mol of aluminium
 - **3** 0.12 mol of carbon
 - 4 0.075 mol of methane
- **29** Structures with a central atom having a co-ordination number of 6 and an oxidation state of +2 include
 - 1 $[Cu(C_2O_4)_3]^{4-}$
 - 2 $[Co(CN)_5(H_2O)]^{3-}$
 - 3 $[Ni(EDTA)]^{2-}$
 - 4 $[Fe(CN)_6]^{3-}$

Turn over

www.theallpapers.com

WWW_XTREMEPAPERS_NET

Directions summarised			
Α	В	С	D
1, 2 and 3 only correct	1 and 3 only correct	2 and 4 only correct	4 only correct

- 30 The types of bonding in methylammonium chloride include
 - 1 ionic.
 - 2 co-ordinate.
 - 3 covalent.
 - 4 hydrogen.
- 31 Methylamine reacts with
 - 1 ethene.
 - 2 ethanoyl chloride.
 - 3 benzene.
 - 4 bromoethane.
- 32 Possible products formed when methylamine reacts with aqueous cobalt(II) chloride include
 - $[Co(CH_3NH_2)_6]^{2+}$ 1
 - $[Co(CH_3NH_3Cl)_6]^{2+}$ 2
 - $[Co(CH_3NH_2)_2(H_2O)_4]^{2+}$ 3
 - $[Co(CH_3NH_3)_6]^{2+}$ 4

33 A major peak at m/z = 43 occurs in the mass spectrum of

- 1 pentan-3-one.
- 2 pentan-2-one.
- 3 2-methylpentan-3-one.
- 4 phenylethanone.

WWW XTREMEPAPERS NET www.theallpapers.com

Directions summarised			
Α	В	С	D
1, 2 and 3 only correct	1 and 3 only correct	2 and 4 only correct	4 only correct

34 The repeating unit of a polymer is shown below.

This polymer has

- 1 van der Waals' forces.
- **2** hydrogen bonding.
- 3 dipole-dipole attractions.
- 4 ionic bonding.

35 Values that show an increase from left to right include

- 1 the boiling points of CH₃COCH₃, CH₃COOH and H₂NCH₂COOH
- 2 the boiling points of $CH_3CH_2CH_2CH_2CH_3$, $(CH_3)_2CHCH_2CH_3$ and $(CH_3)_4C$
- 3 the n.m.r. δ values of the underlined protons in Si(CH₃)₄, CH₃CH₂CH₂ and CH₃COOCH₃
- 4 the bond angles in CH_4 , NH_3 and H_2O

36 Correct statements about the following compound include

$$\begin{array}{ccc} HO & OH \\ I & I \\ H_3C - C - C - C - CH_3 \\ I & I \\ H_3C & CH_3 \end{array}$$

- 1 it exists as a pair of stereoisomers.
- 2 it has an absorption in the infrared at about $3350 \,\mathrm{cm}^{-1}$.
- 3 it can be oxidised with acidified potassium dichromate(VI).
- 4 it can form hydrogen bonds.

Turn over

IWW XTREMEPHPERS NE

Directions summarised			
Α	В	С	D
1, 2 and 3 only correct	1 and 3 only correct	2 and 4 only correct	4 only correct

37 Compounds with two singlets in the proton n.m.r. spectrum include

- 1 ethane.
- 2 ethanoic acid.
- 3 ethanol.
- 4 ethane-1,2-diol.
- **38** Limonene has the structure shown below.

Correct statements about limonene include

- 1 it has an empirical formula of C_5H_8
- 2 it has van der Waals' forces between its molecules.
- 3 one mole of limonene reacts with two moles of hydrogen bromide.
- 4 one mole of limonene requires four moles of hydrogen gas to become completely saturated.

WWW XTREMEPAPERS NET www.theallpapers.com

19

Directions summarised			
Α	В	С	D
1, 2 and 3 only correct	1 and 3 only correct	2 and 4 only correct	4 only correct

Questions 39 and 40

Use the information below to answer questions 39 and 40

Limonene, which occurs in citrus fruits, belongs to a class of natural products called terpenes. The conversion of limonene into compound \mathbf{X} , via a bromoalkane intermediate, is shown below. Compound \mathbf{X} can be used in cough medicine.

39 Types of mechanism shown in the reactions above include

- **1** electrophilic addition.
- 2 nucleophilic addition.
- 3 nucleophilic substitution.
- 4 electrophilic substitution.

40 Correct statements about compound X include

- 1 it exhibits hydrogen bonding between its molecules.
- 2 it is dehydrated by hot concentrated sulphuric acid.
- 3 it reacts with ethanoyl chloride to produce an ester.
- 4 it is oxidised by acidified potassium dichromate(VI).

END OF QUESTIONS

NWW XTREMEPAPERS NE

THERE ARE NO QUESTIONS PRINTED ON THIS PAGE

Copyright $\ensuremath{\mathbb{O}}$ 2005 AQA and its licensors. All rights reserved.

