Surname		Other Names								
Centre Number						Candidate Number				
Candidate Signature										

General Certificate of Education
January 2004
Advanced Level Examination

CHEMISTRY

CHM6/W
Unit 6a Synoptic Assessment

Friday 23 January 2004 Afternoon Session

In addition to this paper you will require:

- an objective test answer sheet;
- a black ball-point pen;
- a calculator.

Time allowed: 1 hour

Instructions

- Use a black ball-point pen. Do not use pencil.
- Fill in the boxes at the top of this page.
- Answer all 40 questions.
- For each item there are four responses. When you have selected the response which you think is the best answer to a question, mark this response on your answer sheet.
- Mark all responses as instructed on your answer sheet. If you wish to change your answer to a question, follow the instructions on your answer sheet.
- Do all rough work in this book, not on your answer sheet.
- Make sure that you hand in both your answer sheet and this question paper at the end of this examination.
- The Periodic Table/Data Sheet is provided on pages 3 and 4. Detach this perforated sheet at the start of the examination.

Information

- Each correct answer will score one mark. No deductions will be made for wrong answers.
- This paper carries 10 per cent of the total marks for Advanced Level.
- The following data may be required.

Gas constant $R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

Advice

- Do not spend too long on any question. If you have time at the end, go back and answer any question you missed out.

NO QUESTIONS APPEAR ON THIS PAGE

The Periodic Table of the Elements
The atomic numbers and approximate relative atomic masses shown in the table are for use in the examination unless stated otherwise in an individual question.

I	II											III	IV	V	VI	VII	0
		Key															$\left.\right\|_{2}{ }^{4.0} \text { He }$
$\int_{3}^{6.9 \text { Lithium }}$	9.0 Be Beryllium 4		relative atomic mass atomic number \qquad			$\left.\right\|_{3} \begin{array}{\|c} 6.9 \\ \text { Lithium } \end{array}$						$\int_{5}^{10.8} \begin{gathered} \text { B } \\ 5 \end{gathered}$	${ }_{6}^{12.0} \mathbf{C}$	$\left.\right\|_{7} ^{14.0} \mathbf{N}$	$\left.\right\|_{8} ^{16.0} \begin{gathered} \text { Oxygen } \end{gathered}$	$\left.\right\|_{9} ^{19.0} \text { F }$	$\begin{aligned} & 20.2 \\ & \mathbf{N e} \\ & 10 \end{aligned}$
$\begin{aligned} & 23.0 \\ & \mathrm{Na} \\ & \text { Sodium } \\ & 1 \end{aligned}$	24.3 Mg Magnesium 12											$\begin{aligned} & 27.0 \\ & \text { Aluminium } \\ & 13 \end{aligned}$	${\underset{\text { Silicon }}{28.1} \text { Si }}_{14}$	31.0 P Phosphorus 15	$\underbrace{\text { S }}_{\substack{32.1 \\ \text { Sulphur } \\ 16}}$	${ }_{\text {Chlorine }}^{35.5} \mathbf{C l}$	${\underset{18}{39.9} \mathbf{A r g o n}}^{\text {Arg }}$
	$\begin{aligned} & 40.1 \\ & \text { Calcium } \\ & 20 \end{aligned}$	45.0 Sc Scandium 21	$\begin{aligned} & \text { 47.9 } \mathrm{Ti} \\ & \text { Titanium } \\ & 22 \end{aligned}$	$\begin{aligned} & 50.9 \\ & \text { V } \\ & \text { Vanadium } \\ & 23 \end{aligned}$	52.0 Chromium 24	54.9 Mn Manganese 25	$\begin{array}{\|l} \hline 55.8 \\ \text { Fe } \\ \text { Iron } \\ 26 \end{array}$	$\begin{aligned} & \text { 58.9 } \\ & \text { Cobalt } \\ & 27 \end{aligned}$	$\begin{array}{\|l} \hline 58.7 \\ \begin{array}{l} \text { Ni } \\ \text { Nickel } \end{array} \\ 28 \end{array}$	$\begin{aligned} & 63.5 \\ & \text { Cu } \\ & 29 \\ & 29 \end{aligned}$	$\begin{aligned} & 65.4 \\ & \mathbf{Z n n}_{\text {Zinc }} \end{aligned}$	69.7 31 Gallium	$\begin{aligned} & \begin{array}{l} 72.6 \\ \text { Ge } \\ \text { Germanium } \\ 32 \end{array} \end{aligned}$	74.9 33 Arsenic	79.0 Se Selenium 34	$\begin{aligned} & 79.9 \\ & \text { Br } \\ & \text { Bromine } \\ & 35 \end{aligned}$	
85.5 Rubidium 37	$\begin{aligned} & 87.6 \\ & \text { Sr } \\ & \text { Strontium } \\ & 38 \end{aligned}$	$\begin{array}{\|c} 88.9 \mathbf{Y} \\ \text { Yttrium } \\ 39 \end{array}$	$\begin{aligned} & 91.2 \\ & \text { Zr } \\ & \text { Zirconium } \\ & 40 \end{aligned}$	$\begin{aligned} & 92.9 \\ & \mathbf{N b} \\ & \text { Niobium } \\ & 41 \end{aligned}$	$\begin{aligned} & 95.9 \\ & \text { Mo } \\ & \text { Molybdenum } \\ & 42 \end{aligned}$	98.9 Tc Technetium 43	101.1 Ru Ruthenium 44	102.9 Rhodium 45	106.4 Palladium 46	$\begin{gathered} 107.9 \\ \text { Ag } \\ \text { Silver } \\ 47 \end{gathered}$	112.4 Cadmium 48	$\begin{array}{\|c} \hline 114.8 \\ \text { In } \\ \text { Indium } \\ 49 \end{array}$	$\left.\right\|^{118.7} \begin{aligned} & \text { Sin } \\ & \text { Tin } \end{aligned}$	121.8 Sb Antimony 51	127.6 Te Tellurium 52	$\begin{array}{\|c} \hline 126.9 \\ \text { I } \\ 53 \end{array}$	$\begin{aligned} & 131.3 \\ & \text { Xe } \\ & \text { Xenon } \\ & 54 \end{aligned}$
$\begin{aligned} & \begin{array}{l} 32.9 \\ \text { Cs } \\ \text { Caesium } \\ 55 \end{array} \end{aligned}$	$\begin{aligned} & 137.3 \\ & \text { Ba } \\ & \text { Barium } \\ & 56 \end{aligned}$	$\begin{aligned} & \hline 138.9 \\ & \text { La } \\ & \text { Lanthanum } \\ & 57 \quad \star \end{aligned}$		$\begin{aligned} & \hline 180.9 \\ & \text { Ta } \\ & \text { Tantalum } \\ & 73 \end{aligned}$	183.9 W Tungsten 74	186.2 Re Rhenium 75	$\begin{aligned} & 190.2 \\ & \text { Os } \\ & \text { Osmium } \\ & 76 \end{aligned}$	$\begin{array}{\|c} \hline 192.2 \\ \text { Ir } \\ \text { Iridium } \\ 77 \end{array}$	$\begin{aligned} & \hline 195.1 \\ & \text { Pt } \\ & \text { Platinum } \\ & 78 \end{aligned}$	$\begin{aligned} & 197.0 \\ & \text { Au } \\ & 79 \end{aligned}$	$\begin{array}{\|l} 200.6 \\ \text { Hg } \\ \text { Mercury } \\ 80 \end{array}$	$\begin{aligned} & \hline 204.4 \\ & \text { TI } \\ & \text { Thallium } \\ & 81 \end{aligned}$	$\begin{aligned} & 207.2 \\ & \text { Pb } \\ & 82 \end{aligned}$	$\begin{array}{\|l} \hline 209.0 \\ \text { Bi } \\ \text { Bismuth } \\ 83 \end{array}$	$\begin{aligned} & 210.0 \\ & \text { Po } \\ & \text { Polonium } \\ & 84 \end{aligned}$	$\begin{array}{\|l} \hline 210.0 \\ \text { At } \\ \text { Astatine } \\ 85 \end{array}$	$\begin{aligned} & 222.0 \\ & \mathbf{R n}^{\text {Radon }} \\ & 86 \end{aligned}$
323.0 Francium 87	$\begin{aligned} & 226.0 \\ & \text { Ra } \\ & \text { Radium } \\ & 88 \end{aligned}$	$\begin{array}{\|c} 227 \\ \text { Actinium } \\ 89 \end{array}$															

$\underbrace{}_{0}$	

Table 1
Proton n.m.r chemical shift data

Type of proton	$\boldsymbol{\delta} / \mathbf{p p m}$
RCH_{3}	$0.7-1.2$
$\mathrm{R}_{2} \mathrm{CH}_{2}$	$1.2-1.4$
$\mathrm{R}_{3} \mathrm{CH}$	$1.4-1.6$
RCOCH_{3}	$2.1-2.6$
ROCH_{3}	$3.1-3.9$
RCOOCH_{3}	$3.7-4.1$
ROH	$0.5-5.0$

Table 2
Infra-red absorption data

Bond	Wavenumber/cm ${ }^{\mathbf{- 1}}$
$\mathrm{C}-\mathrm{H}$	$2850-3300$
$\mathrm{C}-\mathrm{C}$	$750-1100$
$\mathrm{C}=\mathrm{C}$	$1620-1680$
$\mathrm{C}=\mathrm{O}$	$1680-1750$
$\mathrm{C}-\mathrm{O}$	$1000-1300$
$\mathrm{O}-\mathrm{H}$ (alcohols)	$3230-3550$
$\mathrm{O}-\mathrm{H}$ (acids)	$2500-3000$

Multiple choice questions

Each of Questions $\mathbf{1}$ to $\mathbf{2 4}$ consists of a question or an incomplete statement followed by four suggested answers or completions. You are to select the most appropriate answer in each case.

Questions 1 to 3

The data below refer to the industrial production of nitric acid from ammonia. Use this information to answer questions $\mathbf{1}$ to $\mathbf{3}$.

```
Reaction \(1 \quad 4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad \Delta H^{\ominus}=-909 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
Reaction \(2 \quad 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \Delta H^{\ominus}=-115 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
Reaction \(3 \quad 3 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons 2 \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{NO}(\mathrm{g}) \Delta H^{\ominus}=-117 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
```

1 Possible units for the equilibrium constant, $K_{\mathfrak{c}}$, for reaction 2 are
A $\quad \mathrm{mol}^{-2} \mathrm{~m}^{6}$
B $\mathrm{mol}^{-1} \mathrm{dm}^{3}$
C no units
D moldm^{-3}

2 The equilibrium yield in all three reactions is increased when
A the pressure is increased.
B the pressure is decreased.
C the temperature is increased.
D the temperature is decreased.

3 The direct oxidation of ammonia to nitrogen dioxide can be represented by the equation

$$
4 \mathrm{NH}_{3}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

for which the standard enthalpy change, in $\mathrm{kJ} \mathrm{mol}^{-1}$, is
A $\quad-1139$
B $\quad-1024$
C $\quad-794$

D $\quad-679$

4 Sodium hydrogencarbonate decomposes on heating as shown by the equation below.

$$
2 \mathrm{NaHCO}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

The volume of carbon dioxide, measured at 298 K and 101 kPa , obtained by heating 0.0500 mol of sodium hydrogencarbonate is

A $\quad 613 \mathrm{~cm}^{3}$
B $\quad 1226 \mathrm{~cm}^{3}$

C $613 \mathrm{dm}^{3}$
D $\quad 1226 \mathrm{dm}^{3}$

Questions 5 to 8

Questions 5 to 8 refer to ethanedioic acid, $(\mathrm{COOH})_{2}$.
This is a diprotic acid with K_{a} values of $5.9 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$ and $5.3 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$.

5 The pH of a $0.0010 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of ethanedioic acid is (For this calculation, you should neglect the second ionisation.)

A $\quad 1.23$
B $\quad 2.11$
C 4.23

D 4.28

6 The minimum volume of a $0.150 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of sodium hydroxide required to neutralise 0.00500 mol of ethanedioic acid completely is

A $\quad 33.3 \mathrm{~cm}^{3}$
B $\quad 50.0 \mathrm{~cm}^{3}$
C $\quad 66.7 \mathrm{~cm}^{3}$
D $\quad 300 \mathrm{~cm}^{3}$

7 Which one of the following reactions would not lead to the formation of ethanedioic acid?
A oxidation of $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
B oxidation of HOOCCHO
C hydrolysis of $\mathrm{NCCH}_{2} \mathrm{CH}_{2} \mathrm{CN}$
D hydrolysis of $\mathrm{CH}_{3} \mathrm{OOCCOOCH}_{3}$

8 Which one of the following is not correct?
A Ethanedioic acid produces bubbles of gas when treated with aqueous sodium hydrogencarbonate.

B The ethanedioate ion can form octahedral complex ions with transition metal ions.
C A buffer solution is formed when a $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous solution of the acid is mixed with an equal volume of a $0.05 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of sodium hydroxide.

D When an aqueous solution of ethanedioic acid is titrated with sodium hydroxide, a suitable indicator for the first equivalence point is phenolphthalein.

9 Which one of the following is a redox reaction?
A $2 \mathrm{CrO}_{4}^{2-}+2 \mathrm{H}^{+} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{H}_{2} \mathrm{O}$
B $\quad 3 \mathrm{Cl}_{2}+6 \mathrm{OH}^{-} \rightarrow 5 \mathrm{Cl}^{-}+\mathrm{ClO}_{3}^{-}+3 \mathrm{H}_{2} \mathrm{O}$
C $\quad \mathrm{HNO}_{3}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NO}_{2}^{+}+\mathrm{H}_{3} \mathrm{O}^{+}+2 \mathrm{HSO}_{4}^{-}$
D $\mathrm{CaCO}_{3}+\mathrm{SiO}_{2} \rightarrow \mathrm{CaSiO}_{3}+\mathrm{CO}_{2}$

TURN OVER FOR THE NEXT QUESTION

Questions 10 and 11

Use the data in the table below to answer questions $\mathbf{1 0}$ and $\mathbf{1 1}$.

	E^{\ominus} / V
$\mathrm{MnO}_{4}^{-}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq})+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	+1.52
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})+14 \mathrm{H}^{+}(\mathrm{aq})+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}(\mathrm{aq})+7 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	+1.33
$\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$	+0.77
$\mathrm{Cr}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cr}^{2+}(\mathrm{aq})$	-0.41
$\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(\mathrm{s})$	-0.76

10 The most powerful oxidising agent in the table is
A $\mathrm{Mn}^{2+}(\mathrm{aq})$
B $\quad \mathrm{Zn}(\mathrm{s})$
C $\quad \mathrm{MnO}_{4}^{-}(\mathrm{aq})$
D $\mathrm{Zn}^{2+}(\mathrm{aq})$

11 Which one of the following statements is not correct?
A $\mathrm{Fe}^{2+}(\mathrm{aq})$ can reduce acidified $\mathrm{MnO}_{4}^{-}(\mathrm{aq})$ to $\mathrm{Mn}^{2+}(\mathrm{aq})$
B $\quad \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})$ can oxidise acidified $\mathrm{Fe}^{2+}(\mathrm{aq})$ to $\mathrm{Fe}^{3+}(\mathrm{aq})$
C $\quad \mathrm{Zn}(\mathrm{s})$ can reduce acidified $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})$ to $\mathrm{Cr}^{2+}(\mathrm{aq})$
D $\mathrm{Fe}^{2+}(\mathrm{aq})$ can reduce acidified $\mathrm{Cr}^{3+}(\mathrm{aq})$ to $\mathrm{Cr}^{2+}(\mathrm{aq})$

Questions 12 to 14

Use the information below to answer questions 12 to 14.
A saturated solution of magnesium hydroxide, $\mathrm{Mg}(\mathrm{OH})_{2}$, contains 0.1166 g of $\mathrm{Mg}(\mathrm{OH})_{2}$ in $10.00 \mathrm{dm}^{3}$ of solution. In this solution the magnesium hydroxide is fully dissociated into ions.

12 Which one of the following is the concentration of $\mathrm{Mg}^{2+}(\mathrm{aq})$ ions in the saturated solution?
A $\quad 2.82 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$
B $\quad 2.00 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$
C $\quad 2.82 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$
D $\quad 2.00 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$

13 Which one of the following is the pH of a solution of magnesium hydroxide containing $4.0 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$ of hydroxide ions at 298 K ? $\left(K_{\mathrm{w}}=1.0 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}\right.$ at 298 K$)$

A 9.6
B 9.5
C 8.6
D 8.3

14 The equilibrium constant expression for the dissolving of magnesium hydroxide is $K=\left[\mathrm{Mg}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}$. In a saturated solution of $\mathrm{Mg}(\mathrm{OH})_{2}$ at a different temperature, the concentration of hydroxide ions is $1.0 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$.

Which one of the following has the correct value and units for K under these conditions?
A $\quad 1.0 \times 10^{-6} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$
B $\quad 5.0 \times 10^{-7} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$
C $\quad 1.0 \times 10^{-9} \mathrm{~mol}^{3} \mathrm{dm}^{-9}$
D $\quad 5.0 \times 10^{-10} \mathrm{~mol}^{3} \mathrm{dm}^{-9}$

15 A particular sample of bauxite ore contains 55% by mass of $\mathrm{Al}_{2} \mathrm{O}_{3}\left(M_{\mathrm{r}}=102\right)$ and no other aluminium compound. The minimum mass of this ore needed to produce 1.0 tonne of aluminium is

A 1.8 tonne
B 1.9 tonne
C 2.9 tonne
D 3.4 tonne

16 Use your knowledge of the chemistry of transition metals to predict which of the following will convert $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ into MnO_{4}^{2-}

A an acid and a reducing agent
B an acid and an oxidising agent
C an alkali and a reducing agent
D an alkali and an oxidising agent

Questions 17 and 18

Questions 17 and 18 concern the preparation of the plastic poly(methyl 2-methylpropenoate) (Perspex), starting from propanone.

Compound \mathbf{K}

17 Which one of the following sets of reagents is not suitable for the step indicated?
A Step $1 \mathrm{HCN}(\mathrm{NaCN}$ then dilute HCl$)$
B Step 2 hot ethanolic KOH
C Step 3 warm aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$
D Step $4 \mathrm{CH}_{3} \mathrm{OH}$ with an acid catalyst

18 Which one of the following is not a structural isomer of Compound \mathbf{M} ?

B

C

D

19 Terylene is made by reacting benzene-1,4-dicarboxylic acid and ethane-1,2-diol.
Terylene is
A an addition polymer.
B a polyamide.
C a polyester.
D a nylon.

Questions 20 to 22

Questions 20 to 22 refer to the reaction sequence below.

20 Which one of the following is not involved in the reaction sequence?

A esterification

B hydrolysis
C nucleophilic addition
D reduction

21 HCN is a weak acid with a $\mathrm{p} K_{\mathrm{a}}$ value of 9.40 . If a $0.010 \mathrm{moldm}^{-3}$ solution of HCN was used in the first step, the concentration of cyanide ions, in moldm^{-3}, would be

A $\quad 2.0 \times 10^{-6}$
B $\quad 6.4 \times 10^{-5}$
C $\quad 2.0 \times 10^{-5}$
D $\quad 3.1 \times 10^{-1}$

22 Which one of the following statements about compounds \mathbf{P} to \mathbf{S} is not correct?
A $\mathbf{P}, \mathbf{Q}, \mathbf{R}$ and \mathbf{S} all have a strong absorption in their infra-red spectra between 1700 and $1750 \mathrm{~cm}^{-1}$
B $\quad \mathbf{P}$ and \mathbf{S} both have two peaks in their proton n.m.r. spectra with areas in the ratio 3:1
$\mathbf{C} \quad \mathbf{P}, \mathbf{Q}, \mathbf{R}$ and \mathbf{S} all have doublet peaks in their proton n.m.r. spectra that can be assigned to a methyl group.

D $\quad \mathbf{S}$ has major peaks in the mass spectrum at $m / z=144$ and 129

23 Which one of the following does not support the suggestion that an unknown organic compound could be

A It has elemental composition by mass of $\mathrm{O}, 36.36 \% ; \mathrm{H}, 9.09 \%$
B Its mass spectrum has major peaks at $m / z=88$ and 57 and 31
C Its infra-red spectrum has an absorption at $1735 \mathrm{~cm}^{-1}$

D Its proton n.m.r. spectrum has 3 peaks, in the area ratio 2:3:3

24 Ibuprofen is a drug used as an alternative to aspirin for the relief of pain, fever and inflammation. The structure of ibuprofen is shown below.

Which one of the following statements is not correct?

A It has optical isomers.
B It liberates carbon dioxide with sodium carbonate solution.

C It undergoes esterification with ethanol.

D It undergoes oxidation with acidified potassium dichromate(VI).

Multiple completion questions

For each of Questions $\mathbf{2 5}$ to $\mathbf{4 0}$, one or more of the options given may be correct. Select your answer by means of the following code.

A if $\mathbf{1 , 2}$ and $\mathbf{3}$ only are correct.
B if $\mathbf{1}$ and $\mathbf{3}$ only are correct.
C if $\mathbf{2}$ and $\mathbf{4}$ only are correct.
D if $\mathbf{4}$ alone is correct.

Directions summarised			
\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
$\mathbf{1}, \mathbf{2}$ and $\mathbf{3}$ only correct	$\mathbf{1}$ and $\mathbf{3}$ only correct	$\mathbf{2}$ and $\mathbf{4}$ only correct	$\mathbf{4}$ only correct

25 Reactions with a positive value for ΔS include
1 fermentation of glucose.
2 hydration of ethene.
3 hydrolysis of ethanoyl chloride.
4 polymerisation of propene.

26 Correct statements include
$1 \mathrm{Be}(\mathrm{OH})_{2}$ is amphoteric.
$2 \mathrm{Ba}(\mathrm{OH})_{2}$ is more soluble in water than $\mathrm{Ca}(\mathrm{OH})_{2}$
$3 \quad \mathrm{CH}_{3} \mathrm{COCl}$ will give a white precipitate when added to aqueous silver nitrate.
$4 \quad \mathrm{CoCl}_{2}$ and concentrated hydrochloric acid form the $\left[\mathrm{CoCl}_{6}\right]^{4}(\mathrm{aq})$ ion.

27 Redox reactions include
$1 \quad \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$
$2 \quad 2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})$
$3 \quad 3 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+2 \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})+16 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 3 \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+4 \mathrm{Cr}^{3+}(\mathrm{aq})+11 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$4 \quad \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$

Directions summarised			
\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
$\mathbf{1}, \mathbf{2}$ and $\mathbf{3}$ only correct	$\mathbf{1}$ and $\mathbf{3}$ only correct	$\mathbf{2}$ and $\mathbf{4}$ only correct	$\mathbf{4}$ only correct

28 The extraction of titanium can be represented by the following equations:
Reaction $1 \quad \mathrm{TiO}_{2}+2 \mathrm{Cl}_{2}+2 \mathrm{C} \rightarrow \mathrm{TiCl}_{4}+2 \mathrm{CO}$
Reaction $2 \quad \mathrm{TiCl}_{4}+4 \mathrm{Na} \rightarrow \mathrm{Ti}+4 \mathrm{NaCl}$
Correct statements include
1 Both reactions are redox reactions.
2 An argon atmosphere is used in reaction 2.
30.52 tonne of titanium can be produced by using 1.0 tonne of sodium.
40.48 tonne of sodium is needed to produce 1.0 tonne of titanium.

29 Consider the Period 3 elements
$\mathrm{Na}, \mathrm{Mg}, \mathrm{Al}, \mathrm{Si}, \mathrm{P}, \mathrm{S}, \mathrm{Cl}$
Correct statements include
$1 \mathrm{Na}(\mathrm{g})$ has the largest atomic radius.
$2 \mathrm{Na}(\mathrm{s})$ has the highest electrical conductivity.
$3 \mathrm{Cl}(\mathrm{g})$ has the highest first ionisation enthalpy.
$4 \quad \mathrm{Cl}^{-}(\mathrm{g})$ and $\mathrm{S}^{2-}(\mathrm{g})$ have the same ionic radius.

Directions summarised			
\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
$\mathbf{1}, \mathbf{2}$ and $\mathbf{3}$ only correct	$\mathbf{1}$ and $\mathbf{3}$ only correct	$\mathbf{2}$ and $\mathbf{4}$ only correct	$\mathbf{4}$ only correct

Questions 30 to 32

In questions $\mathbf{3 0}$ to $\mathbf{3 2}$ consider the reaction scheme below.

30 Correct statements include
1 sodium carbonate is an oxidising agent in step \mathbf{X}.
2 zinc is a reducing agent in step \mathbf{W}.
3 iron(II) sulphate is an oxidising agent in step \mathbf{V}.
4 hydrogen peroxide is an oxidising agent in step \mathbf{Z}.

31 Correct statements include
1 the oxidation states of chromium shown in the above reaction scheme are $+2,+3$ and +6 .
2 only step \mathbf{X} will produce a precipitate and a gas.
3 steps \mathbf{V}, \mathbf{W} and \mathbf{Z} will produce a colour change.
4 steps \mathbf{X} and \mathbf{Y} will involve a change in the oxidation state of chromium.

32 Correct equations for the steps above include
$1 \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+3 \mathrm{Fe}^{2+} \rightarrow 2 \mathrm{Cr}^{3+}+3 \mathrm{Fe}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{Zn}+\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} \rightarrow\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\mathrm{Zn}^{2+}$
$3 \quad 3\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+2 \mathrm{CO}_{3}^{2-} \rightarrow 3\left[\mathrm{Cr}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]+2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
$4 \quad 2\left[\mathrm{Cr}(\mathrm{OH})_{6}\right]^{3-}+3 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{CrO}_{4}^{2-}+2 \mathrm{OH}^{-}+8 \mathrm{H}_{2} \mathrm{O}$

Directions summarised			
\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
$\mathbf{1}, \mathbf{2}$ and $\mathbf{3}$ only correct	$\mathbf{1}$ and $\mathbf{3}$ only correct	$\mathbf{2}$ and $\mathbf{4}$ only correct	$\mathbf{4}$ only correct

33 Correct statements about the complex $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{3}\right]^{3+}$ include
1 the ligand in the complex is bidentate.
2 the oxidation state of cobalt in the complex is +3 .
3 the complex has an octahedral shape.
4 the coordination number of cobalt in the complex is 3 .

34 Correct statements about 2-methylbutanal include
1 it reduces $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$to silver.
2 it has stereoisomers.
3 it has a strong absorption in its infra-red spectrum at about $1705 \mathrm{~cm}^{-1}$.
4 its proton n.m.r. spectrum includes only one peak that can be assigned to a methyl group.

35 Correct statements about
 include

1 it is an isomer of ethyl pentanoate.
2 it has major peaks at $m / z=57$ and 85 in its mass spectrum.
3 it has three singlet peaks in its proton n.m.r. spectrum with area ratio 6:3:3
4 hydrolysis gives an organic product with a broad absorption in the infra-red at $3350 \mathrm{~cm}^{-1}$.

Directions summarised			
\mathbf{A}	B	\mathbf{C}	\mathbf{D}
$\mathbf{1}, \mathbf{2}$ and $\mathbf{3}$ only correct	$\mathbf{1}$ and $\mathbf{3}$ only correct	$\mathbf{2}$ and $\mathbf{4}$ only correct	$\mathbf{4}$ only correct

Questions 36 and 37

Questions $\mathbf{3 6}$ and $\mathbf{3 7}$ are about the reaction sequence below.

36 Conversions that are reductions include
1 F into \mathbf{G}
$2 \mathbf{G}$ into \mathbf{H}
$3 \quad \mathbf{H}$ into \mathbf{I}
4 I into J

37 Correct statements include
1 ethanoyl chloride with a Lewis acid could achieve the conversion of \mathbf{F} into \mathbf{G}.
2 G would show major peaks in its mass spectrum at $m / z=115$ and 43 .
3 the conversion of \mathbf{H} into \mathbf{I} could be achieved with concentrated sulphuric acid; this is an example of homogeneous catalysis.

4 the proton n.m.r. spectrum of \mathbf{J} includes a triplet and a quartet in the area ratio $2: 3$, respectively.

Directions summarised			
\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
$\mathbf{1}, \mathbf{2}$ and $\mathbf{3}$ only correct	$\mathbf{1}$ and $\mathbf{3}$ only correct	$\mathbf{2}$ and $\mathbf{4}$ only correct	$\mathbf{4}$ only correct

38 Correct statements about non-cyclic compounds include
1 there are two geometrical isomers of $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}$
2 there are two position isomers of $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Cl}$
3 there are two optical isomers of $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Cl}_{2}$
4 there are two chain isomers of $\mathrm{C}_{3} \mathrm{H}_{8}$

39 Types of reaction that the molecule below can undergo include

1
electrophilic addition and nucleophilic addition.
2 electrophilic substitution and nucleophilic substitution.
3 electrophilic addition and electrophilic substitution.
4 nucleophilic addition and nucleophilic substitution.

Directions summarised			
\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
$\mathbf{1}, \mathbf{2}$ and $\mathbf{3}$ only correct	$\mathbf{1}$ and $\mathbf{3}$ only correct	$\mathbf{2}$ and $\mathbf{4}$ only correct	$\mathbf{4}$ only correct

40 Atoms around which the bonds are arranged tetrahedrally include

1 atom w
2 atom x
3 atom y
4 atom z

END OF QUESTIONS

Copyright © 2004 AQA and its licensors. All rights reserved

