

General Certificate of Education June 2008
Advanced Level Examination

CHEMISTRY
CHM6/W

ASSESSMENT and
OUALIFICATIONS
ALLIANCE

Unit 6a Synoptic Assessment

Thursday 19 June $2008 \quad 9.00$ am to 10.00 am

For this paper you must have:

- an objective test answer sheet,
- a calculator.

Time allowed: 1 hour

Instructions

- Use a black ball-point pen. Do not use pencil.
- Fill in the boxes at the top of this page.
- Answer all 40 questions.
- For each item there are four responses. When you have selected the response which you think is the best answer to a question, mark this response on your answer sheet.
- Mark all responses as instructed on your answer sheet. If you wish to change your answer to a question, follow the instructions on your answer sheet.
- Do all rough work in this book, not on your answer sheet.
- Make sure that you hand in both your answer sheet and this answer book at the end of this examination.
- The Periodic Table/Data Sheet is provided on pages 3 and 4. Detach this perforated sheet at the start of the examination.

Information

- Each correct answer will score one mark. No deductions will be made for wrong answers.
- This paper carries 10 per cent of the total marks for Advanced Level.

Advice

- Do not spend too long on any question. If you have time at the end, go back and answer any question you missed out.

Multiple choice questions

Each of Questions $\mathbf{1}$ to $\mathbf{2 0}$ consists of a question or an incomplete statement followed by four suggested answers or completions. You are asked to select the most appropriate answer in each case.

1 Which one of the following solids contains covalent bonds but not ionic bonds?
A $\quad \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$
B CuSO_{4}
C $\quad \mathrm{NH}_{4} \mathrm{Br}$
D $\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Cl}$

2 Which one of the following has the same electronic arrangement as Li^{+}?
A Na^{+}
B Be^{2+}
C F^{-}

D Ne

3 What is the final pH of the solution obtained when 0.200 mol of sodium propanoate is added to $1.00 \mathrm{dm}^{3}$ of a $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of propanoic acid $\left(K_{\mathrm{a}}=1.30 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}\right)$?

A $\quad 6.59$
B $\quad 5.19$
C 4.59
D 2.84
The Periodic Table of the Elements
The atomic numbers and approximate relative atomic masses shown in the table are for use in the examination unless stated otherwise in an individual question.

Gas constant $R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

Table 1
Proton n.m.r chemical shift data

Type of proton	$\boldsymbol{\delta} / \mathbf{p p m}$
RCH_{3}	$0.7-1.2$
$\mathrm{R}_{2} \mathrm{CH}_{2}$	$1.2-1.4$
$\mathrm{R}_{3} \mathrm{CH}$	$1.4-1.6$
RCOCH_{3}	$2.1-2.6$
ROCH_{3}	$3.1-3.9$
RCOOCH_{3}	$3.7-4.1$
ROH	$0.5-5.0$

Table 2
Infra-red absorption data

Bond	Wavenumber/cm ${ }^{\mathbf{- 1}}$
$\mathrm{C}-\mathrm{H}$	$2850-3300$
$\mathrm{C}-\mathrm{C}$	$750-1100$
$\mathrm{C}=\mathrm{C}$	$1620-1680$
$\mathrm{C}=\mathrm{O}$	$1680-1750$
$\mathrm{C}-\mathrm{O}$	$1000-1300$
$\mathrm{O}-\mathrm{H}$ (alcohols)	$3230-3550$
$\mathrm{O}-\mathrm{H}$ (acids)	$2500-3000$

Questions 4 to 6

The diagrams represent some dilute aqueous solutions.
In all cases, only a few of the large numbers of water molecules are shown.

$$
\begin{aligned}
\infty & =\mathrm{HX}(\text { an acid }) & O_{0} & =\mathrm{H}_{3} \mathrm{O}^{+}
\end{aligned} \quad \infty=\mathrm{H}_{2} \mathrm{O}
$$

Which one of the diagrams represents

4 a solution of a strong acid?

5 a solution of a salt formed by neutralising a strong acid with sodium hydroxide?

6 a solution of a weak acid partially neutralised by sodium hydroxide?

7 The largest mass of silver chloride is precipitated when an excess of silver nitrate solution is added to

A $\quad 25.0 \mathrm{~cm}^{3}$ of a $0.800 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of hydrochloric acid.
B $\quad 50.0 \mathrm{~cm}^{3}$ of a $0.500 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of sodium chloride.
C $\quad 50.0 \mathrm{~cm}^{3}$ of a $0.200 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of magnesium chloride.
D $\quad 30.0 \mathrm{~cm}^{3}$ of a $0.300 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of iron(III) chloride.

8 Titanium ore is processed to give a concentrate containing 95%, by mass, of titanium(IV) oxide. The percentage by mass of titanium in this concentrate is

A 25
B 39
C 57
D 76

9 Four possible thermal decomposition reactions of $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~s})$ are shown below. Which one of the following reactions has the largest mole fraction of oxygen gas in its product mixture?

A $\quad \mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~s}) \longrightarrow \mathrm{N}_{2} \mathrm{O}_{3}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
B $\quad \mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~s}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$
C $\quad \mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~s}) \longrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$
D $\quad \mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~s}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$

10 Which one of the statements about the following ester is correct?

A It is a chain isomer of pentanoic acid.
B It is a functional group isomer of ethyl propanoate.
C It can be hydrolysed to produce an alcohol that can also be formed by the acid-catalysed hydration of propene.

D It can be hydrolysed to produce an alcohol that is resistant to oxidation by acidified potassium dichromate(VI).

11 Which one of the following reactions produces a compound that could be used as a monomer in the formation of an addition polymer that contains chlorine atoms?

A The addition of one molecule of HCl to 1,2-dichloroethene.
B The addition of one molecule of HCl to propene.
C The elimination of one molecule of HCl from 2-chloropropane.
D The elimination of one molecule of HCl from 1,2-dichloroethane.

12 Which one of the following reacts with butanedioic acid to form a condensation polymer?
A The product from the reaction of epoxyethane with water.
B The product from the reaction of ethanoic anhydride with water.
C The product from the reaction of ethanal with HCN
D The product from the reaction of ethene with bromine.

13 Which one of the following is formed when an excess of bromomethane reacts with diethylamine?

A

B

C

D

14 A sequence of reactions is shown below.

A correct list of substances for the sequence is

	Reaction 1	Reaction 2	Reaction 3	Reaction 4
\mathbf{A}	$\mathrm{CH}_{3} \mathrm{COCl}$	NaBH_{4}	conc $\mathrm{H}_{2} \mathrm{SO}_{4}$	$\mathrm{Cl} l_{2}$
\mathbf{B}	AlCl_{3}	HCl	NaOH	Cl_{2}
\mathbf{C}	AlCl_{3}	NaBH_{4}	conc $\mathrm{H}_{2} \mathrm{SO}_{4}$	HCl
\mathbf{D}	AlCl_{3}	NaBH_{4}	conc $\mathrm{H}_{2} \mathrm{SO}_{4}$	Cl_{2}

15 An equation for the incomplete combustion of butane in oxygen is

$$
\mathrm{C}_{4} \mathrm{H}_{10}+4 \frac{1}{2} \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}+5 \mathrm{H}_{2} \mathrm{O}
$$

The volume in dm^{3} of oxygen at 295 K and 100 kPa required to burn 0.10 mol of butane to form steam and carbon monoxide only is

A 8.6
B 11
C 12
D 16
$16 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOC}_{6} \mathrm{H}_{5}+\mathrm{HCl}$
$\left(M_{\mathrm{r}}=140.5\right) \quad\left(M_{\mathrm{r}}=198\right)$

In the reaction above, 1.20 g of the acyl chloride produced 0.800 g of the ester. The percentage yield was

A 47.3

B 66.7
C $\quad 71.0$

D 94.0

17 The compound $\mathrm{CF}_{3} \mathrm{CHBrCl}$ is a general anaesthetic called halothane. The number of structural isomers, including halothane, having the molecular formula $\mathrm{C}_{2} \mathrm{HBrClF}_{3}$ is

A 2
B 3

C 4
D 5

18 Which one of the following statements is correct?
A HI has a higher boiling point than HCl because HI has stronger hydrogen bonding.
B $\quad \mathrm{PCl}_{5}$ is hydrolysed by water to form a weakly acidic solution.
C The reducing ability of the halide ions increases as the size of the anion increases.
D The solubility of the Group II hydroxides decreases as the size of the cation increases.

19 Which one of the following statements is correct?
A $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}(\mathrm{aq})$ will react with an excess of $\mathrm{NH}_{3}(\mathrm{aq})$ to form $\left[\mathrm{Al}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}(\mathrm{aq})$.
B In the electrolysis of aluminium oxide, aluminium metal and oxygen gas are formed in the mole ratio 2:3.

C When concentrated $\mathrm{NH}_{3}(\mathrm{aq})$ is added to $\mathrm{AgBr},\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}(\mathrm{aq})$ is formed.
D In the reduction of TiCl_{4} by sodium, nitrogen is used as an inert atmosphere.

20 Consider the half-equations given below.

$$
\begin{array}{rlr}
\mathrm{VO}_{2}^{+}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{e}^{-} & \rightarrow \mathrm{VO}^{2+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \boldsymbol{E} / \boldsymbol{V} \\
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})+1.00 \\
+14 \mathrm{H}^{+}(\mathrm{aq})+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}(\mathrm{aq})+7 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & +1.33 \\
\mathrm{Co}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq}) & +1.82
\end{array}
$$

Which one of the following statements is not correct?
A When $\mathrm{VO}_{2}^{+}(\mathrm{aq})$ forms $\mathrm{VO}^{2+}(\mathrm{aq})$, the oxidation state of vanadium changes from +5 to +4 .
B Acidified potassium dichromate (VI) can oxidise $\mathrm{VO}^{2+}(\mathrm{aq})$ to $\mathrm{VO}_{2}^{+}(\mathrm{aq})$ under standard conditions.

C The electron arrangement of a Co^{3+} ion is $[\mathrm{Ar}] 3 \mathrm{~d}^{6}$.
D An acidified solution containing $\mathrm{VO}_{2}^{+}(\mathrm{aq})$ ions can oxidise $\mathrm{Co}^{2+}(\mathrm{aq})$ to $\mathrm{Co}^{3+}(\mathrm{aq})$ under standard conditions.

Multiple completion questions

For each of Questions 21 to $\mathbf{4 0}$, one or more of the options given may be correct. Select your answer by means of the following code.

A if $\mathbf{1 , 2}$ and $\mathbf{3}$ only are correct.
B if $\mathbf{1}$ and $\mathbf{3}$ only are correct.
C if $\mathbf{2}$ and $\mathbf{4}$ only are correct.
D if $\mathbf{4}$ only is correct.

Directions summarised			
\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
$\mathbf{1}, \mathbf{2}$ and $\mathbf{3}$ only correct	$\mathbf{1}$ and $\mathbf{3}$ only correct	$\mathbf{2}$ and $\mathbf{4}$ only correct	$\mathbf{4}$ only correct

21 A substitution reaction occurs when ammonia reacts with
$1 \quad\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
$2 \quad \mathrm{BF}_{3}$
$3 \quad \mathrm{CH}_{3} \mathrm{Br}$
4 HBr

22 Hydrocarbons which contain 85.7% by mass of carbon include

1

2

3

4

$$
\mathrm{H}_{3} \mathrm{C}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}
$$

Directions summarised			
\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
$\mathbf{1}, \mathbf{2}$ and $\mathbf{3}$ only correct	$\mathbf{1}$ and $\mathbf{3}$ only correct	$\mathbf{2}$ and $\mathbf{4}$ only correct	$\mathbf{4}$ only correct

23 Gas X reacts with gas Y according to the following equation

$$
\mathrm{X}(\mathrm{~g})+\mathrm{Y}(\mathrm{~g}) \rightarrow \mathrm{XY}(\mathrm{~g})
$$

The rate equation for the reaction is

$$
\text { rate }=k[\mathrm{X}][\mathrm{Y}]^{2}
$$

At constant temperature, correct statements include

1 doubling the concentration of X , keeping the concentration of Y constant, will double the rate of reaction.

2 halving the concentration of Y, keeping the concentration of X constant, will decrease the rate by a factor of 8 .

3 trebling the concentration of both X and Y will increase the rate by a factor of 27 .
4 quadrupling the concentration of Y , keeping the concentration of X constant, will increase the rate by a factor of 64 .

Directions summarised			
\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
$\mathbf{1}, \mathbf{2}$ and $\mathbf{3}$			
only correct			

only correct\end{array} \quad $$
\begin{array}{c}\mathbf{2} \text { and } \mathbf{4} \\
\text { only correct }\end{array}
$$\right] \begin{array}{c}\mathbf{4} only

correct\end{array}\right]\)| |
| :--- |

Questions 24 and 25

The diagrams $\mathbf{P}, \mathbf{Q}, \mathbf{R}$ and \mathbf{S} show how a change in conditions affects the Maxwell-Boltzmann distribution of molecular energies for gas G. In each case, the original distribution is shown by a solid line and the distribution after a change has been made is shown by a dashed line.

24 Correct statements at constant volume include
1 the change shown in diagram \mathbf{P} occurs when the temperature is decreased.
2 the change shown in diagram \mathbf{Q} occurs when a catalyst is used.
3 the change shown in diagram \mathbf{R} occurs when the temperature is increased.
4 the change shown in diagram \mathbf{S} occurs when the pressure of G is decreased at constant temperature.

25 Diagrams that illustrate changes which alter the value of the rate constant for the decomposition of gas G include

$1 \quad \mathbf{P}$

$2 \quad$ Q
3 R
4 S

Directions summarised			
\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
$\mathbf{1}, \mathbf{2}$ and $\mathbf{3}$ only correct	$\mathbf{1}$ and $\mathbf{3}$ only correct	$\mathbf{2}$ and $\mathbf{4}$ only correct	$\mathbf{4}$ only correct

26 Substances that form acidic solutions when added to water include
$1 \quad \mathrm{AlCl}_{3}$
$2 \mathrm{Cl}_{2}$
$3 \quad \mathrm{CH}_{3} \mathrm{COCl}$
4 NaCl

27 Species with at least one bond angle of 90° include
$1 \mathrm{XeF}_{4}$
$2 \quad \mathrm{PF}_{5}$
$3 \quad\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
$4 \quad \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{4}$

28 Solutions that form bubbles of a gas with solid $\mathrm{Na}_{2} \mathrm{CO}_{3}$ include
$1 \mathrm{CH}_{3} \mathrm{CHO}(\mathrm{aq})$
$2 \mathrm{HCOOH}(\mathrm{aq})$
$3 \quad \mathrm{CrCl}_{2}(\mathrm{aq})$
$4 \quad \mathrm{CrCl}_{3}(\mathrm{aq})$

29 Chlorine trifluoride can be decomposed into its elements:

Correct statements include
1 the decomposition is a redox reaction.
2 when an equilibrium mixture is heated its colour fades.
3 when the pressure of an equilibrium mixture is decreased more Cl_{2} is formed.
4 the decomposition has a negative entropy change.

Directions summarised			
\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
$\mathbf{1}, \mathbf{2}$ and $\mathbf{3}$ only correct	$\mathbf{1}$ and $\mathbf{3}$ only correct	$\mathbf{2}$ and $\mathbf{4}$ only correct	$\mathbf{4}$ only correct

30 Consider the following reaction scheme.

Types of mechanism involved in this sequence include
1 electrophilic addition.
2 electrophilic substitution.
3 nucleophilic substitution.
4 nucleophilic addition-elimination.

Directions summarised			
\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
$\mathbf{1}, \mathbf{2}$ and $\mathbf{3}$ only correct	$\mathbf{1}$ and $\mathbf{3}$ only correct	$\mathbf{2}$ and $\mathbf{4}$ only correct	$\mathbf{4}$ only correct

31 On melting, covalent bonds must break in
1 poly(ethene).
2 bromine.
3 sulphur dioxide.
4 silicon dioxide.

32 The artificial sweetener aspartame has the structure

Correct statements about aspartame include
1 it can form a zwitterion.
2 it can undergo alkaline hydrolysis.
3 it contains an amide link.
4 it has three chiral carbon atoms.

33 Species that can act as both oxidising and reducing agents include
$1 \quad \mathrm{CH}_{3} \mathrm{CHO}$
2 Fe
$3 \quad \mathrm{Fe}^{2+}$
$4 \mathrm{Fe}^{3+}$

34 Reactants that form an organic product which has an asymmetric carbon atom include
1 but-2-ene and HBr
2 propanone and NaBH_{4}
3 propanal and HCN

4 epoxyethane and $\mathrm{H}_{2} \mathrm{O}$

Directions summarised			
\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
$\mathbf{1}, \mathbf{2}$ and $\mathbf{3}$ only correct	$\mathbf{1}$ and $\mathbf{3}$ only correct	$\mathbf{2}$ and $\mathbf{4}$ only correct	$\mathbf{4}$ only correct

35 Compound \mathbf{X} has the following characteristics

- it has an infra-red spectrum with a strong absorption at around $1700 \mathrm{~cm}^{-1}$
- it has a proton n.m.r. spectrum with only two peaks
- it has a mass spectrum with a major peak at $m / z=57$

Compound \mathbf{X} could be
1 butanone.
2 pentan-3-one.
3 propanal.
4 2,2-dimethylpropanal.

36 The drug tamoxifen, which is used in the treatment of cancer, has the structure

Correct statements about tamoxifen include

1 it can undergo electrophilic addition with bromine.
2 it has a stereoisomer.

3 it can undergo electrophilic substitution with ethanoyl chloride.
4 it is insoluble in hydrochloric acid.

Directions summarised			
\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
$\mathbf{1}, \mathbf{2}$ and $\mathbf{3}$ only correct	$\mathbf{1}$ and $\mathbf{3}$ only correct	$\mathbf{2}$ and $\mathbf{4}$ only correct	$\mathbf{4}$ only correct

37 Ionone, shown below, is a compound responsible for the smell of raspberries.

Mechanisms involved in reactions of ionone include
1 electrophilic addition.
2 electrophilic substitution.
3 nucleophilic addition.
4 nucleophilic substitution.

38 Functional group isomers include
$1 \quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHBrCH}_{3}$
and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$
$2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
and $\mathrm{HCOOCH}_{2} \mathrm{CH}_{3}$
$3 \quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{COOH}$ and $\quad \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$

4 $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3}$ and $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}_{3}$

39 Correct statements include
1 when SiCl_{4} is added to water, a precipitate is formed.
2 sulphur has a higher melting point than phosphorus because the intermolecular attractions are stronger.

3 when AlCl_{3} is dissolved in water, $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})\right]^{2+}(\mathrm{aq})$ is one of the ions formed.
4 when concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ reacts with solid NaBr , the only gaseous product is HBr .

Directions summarised			
A	B	C	D
1, 2 and 3 only correct	1 and 3 only correct	2 and 4 only correct	4 only correct

40 Consider the following reaction, which involves the breaking of only one covalent bond.

$$
\mathrm{O}_{2} \mathrm{~N}-\mathrm{NO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

Correct statements include
$1 \Delta H$ is positive.
$2 \Delta G$ is always positive.
$3 \Delta S$ is positive.
4 the reaction is feasible at any temperature.

There are no questions printed on this page

