Surname				Other	Names			
Centre Nur	mber				Candida	ate Number		
Candidate	Signat	ure						

General Certificate of Education June 2008 Advanced Level Examination

CHEMISTRY Unit 6a Synoptic Assessment

9.00 am to 10.00 am

For this paper you must have:

Thursday 19 June 2008

- an objective test answer sheet,
- a calculator.

Time allowed: 1 hour

Instructions

- Use a black ball-point pen. Do **not** use pencil.
- Fill in the boxes at the top of this page.
- Answer all 40 questions.
- For each item there are four responses. When you have selected the response which you think is the best answer to a question, mark this response on your answer sheet.

CHM6/W

- Mark all responses as instructed on your answer sheet. If you wish to change your answer to a question, follow the instructions on your answer sheet.
- Do all rough work in this book, **not** on your answer sheet.
- Make sure that you hand in **both** your answer sheet **and** this answer book at the end of this examination.
- The Periodic Table/Data Sheet is provided on pages 3 and 4. Detach this perforated sheet at the start of the examination.

Information

- Each correct answer will score one mark. No deductions will be made for wrong answers.
- This paper carries 10 per cent of the total marks for Advanced Level.

Advice

• Do not spend too long on any question. If you have time at the end, go back and answer any question you missed out.

Multiple choice questions

 \mathbf{D}

2.84

Each of Questions 1 to 20 consists of a question or an incomplete statement followed by four suggested answers or completions. You are asked to select the most appropriate answer in each case.

1	W nic	one of the following solids contains covalent bonds but not ionic bonds?
	A	C ₆ H ₅ COOH
	В	CuSO ₄
	C	$\mathrm{NH_{4}Br}$
	D	CH ₃ NH ₃ Cl
2	Whic	ch one of the following has the same electronic arrangement as Li ⁺ ?
	A	Na^+
	В	Be^{2+}
	C	F^-
	D	Ne
3	Wha 1.00	t is the final pH of the solution obtained when 0.200mol of sodium propanoate is added to $ \text{dm}^3$ of a $0.100 \text{mol} \text{dm}^{-3}$ solution of propanoic acid ($K_a = 1.30 \times 10^{-5} \text{mol} \text{dm}^{-3}$)?
	A	6.59
	В	5.19
	C	4.59

The Periodic Table of the Elements

■ The atomic numbers and approximate relative atomic masses shown in the table are for use in the examination unless stated otherwise in an individual question.

_	=											=	≥	>	>	₹	0
1.0 H Hydrogen		_	Key														4.0 He Helium 2
6.9 Li Lithium	9.0 Be Beryllium 4		relative atomic atomic atomic number	relative atomic mass atomic number		6.9 Li Lithium 3						10.8 B Boron 5	12.0 C Carbon 6	14.0 N Nitrogen 7	16.0 O Oxygen 8	19.0 F Fluorine 9	20.2 Ne Neon
23.0 Na Sodium 11	24.3 Mg Magnesium 12											27.0 Al Aluminium 13	8.1 Si Silicon	31.0 P Phosphorus	32.1 S Sulphur 16		39.9 Ar Argon
	_	Scandium	_	_	l –	ı w	Fe 155.8 150 150 150 150 150 150 150 150 150 150	58.9 Co Cobalt 27	58.7 Ni Nickel	63.5 Cu Copper	65.4 Zn Zinc 30	69.7 Ga Gallium 31	.2.6 Ge Sermanium	74.9 As Arsenic 33	79.0 Se Selenium 34		83.8 Kr Krypton 36
85.5 Rb Rubidium 37	87.6 Srontium 38	88.9 Y Yttrium 39	91.2 Zr Zirconium 40	92.9 Nb Niobium 41	95.9 98.9 101.1 102.9 Mo Tc Ru Rh Molybdenum Technetium Ruthenium Rhodium 42 43 44 45	98.9 Tc Technetium	101.1 Ru Ruthenium 44		-	107.9 Ag Silver 47	I	114.8 In Indium 49	Sn Tin	Sb Antimony 51	127.6 Te Tellurium 52		131.3 Xe Xenon 54
	137.3 Ba Barium 56	138.9 La Lanthanum 57 *	178.5 Hf Hafnium 72	180.9 Ta Tantalum 73	183.9 W Tungsten 74	186.2 Re Rhenium 75	190.2 Os Osmium 76	192.2 r r Iridium	Pt Platinum 78	197.0 Au Gold 79	200.6 Hg Mercury 80		207.2 Pb Lead Lead	209.0 Bi Bismuth 83	210.0 Po Polonium 84	210.0 At Astatine 85	222.0 Rn Radon 86
223.0	226.0 Ra Radium 88	227 Ac Actinium 89 †															
thealt Lanthanides	Lantha	nides		_	140.9 Pr Praseodymium 1	144.2 Nd Neodymium 60	144.9 Pm Promethium 631	150.4 Sm Samarium 62	152.0 Eu Europium (63	157.3 Gd Gadolinium 64	158.9 Tb Terbium 35	162.5 164.9 Dy Ho Dysprosium Holmium 66 67	164.9 Ho Holmium 67	167.3 Er bit 58	168.9 Tm Thulium 69	173.0 Yb Ytterbium 70	. Tm Yterbium Lutetium 69 70 70 70 70 70 70 70 70 70 70 70 70 70
rs.eom	3 Actini	səp		Th Thorium 190	Protactinium 91	.236.0 U Uranium 92	Np	Pu Pu Plutonium 94	Am Americium 95	Curium 96	Bk Berkelium	247.1 252.1 (252) (252	Einsteinium 99	757) Fermi 100	Md Mendelevium 101	Nobelium	Lawrencium

Gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

Table 1 Proton n.m.r chemical shift data

Type of proton	δ/ppm
RCH ₃	0.7–1.2
R_2CH_2	1.2–1.4
R_3 CH	1.4–1.6
$RCOCH_3$	2.1–2.6
$ROCH_3$	3.1–3.9
RCOOCH ₃	3.7–4.1
ROH	0.5-5.0

Table 2 Infra-red absorption data

Bond	Wavenumber/cm ⁻¹
С—Н	2850–3300
С—С	750–1100
C=C	1620–1680
C=O	1680–1750
С—О	1000-1300
O—H (alcohols)	3230–3550
O—H (acids)	2500–3000

Questions 4 to 6

The diagrams represent some dilute aqueous solutions. In all cases, only a few of the large numbers of water molecules are shown.

Which one of the diagrams represents

- 4 a solution of a strong acid?
- 5 a solution of a salt formed by neutralising a strong acid with sodium hydroxide?
- 6 a solution of a weak acid partially neutralised by sodium hydroxide?

- 7 The largest mass of silver chloride is precipitated when an excess of silver nitrate solution is added to
 - **A** 25.0 cm³ of a 0.800 mol dm⁻³ solution of hydrochloric acid.
 - \mathbf{B} 50.0 cm³ of a 0.500 mol dm⁻³ solution of sodium chloride.
 - C 50.0 cm³ of a 0.200 mol dm⁻³ solution of magnesium chloride.
 - **D** 30.0 cm³ of a 0.300 mol dm⁻³ solution of iron(III) chloride.
- 8 Titanium ore is processed to give a concentrate containing 95%, by mass, of titanium(IV) oxide. The percentage by mass of titanium in this concentrate is
 - **A** 25
 - **B** 39
 - **C** 57
 - **D** 76
- 9 Four possible thermal decomposition reactions of $N_2O_5(s)$ are shown below. Which one of the following reactions has the largest mole fraction of oxygen gas in its product mixture?
 - $\mathbf{A} \quad N_2 O_5(s) \, \longrightarrow \, N_2 O_3(g) \, + \, O_2(g)$
 - **B** $N_2O_5(s) \rightarrow N_2O_4(g) + \frac{1}{2}O_2(g)$
 - $C N_2O_5(s) \rightarrow 2NO_2(g) + \frac{1}{2}O_2(g)$
 - $\textbf{D} \quad N_2O_5(s) \, \rightarrow \, NO_2(g) \, + \, NO(g) \, + \, O_2(g)$
- 10 Which one of the statements about the following ester is correct?

- **A** It is a chain isomer of pentanoic acid.
- **B** It is a functional group isomer of ethyl propanoate.
- C It can be hydrolysed to produce an alcohol that can also be formed by the acid-catalysed hydration of propene.
- D It can be hydrolysed to produce an alcohol that is resistant to oxidation by acidified potassium dichromate(VI). www.theallpapers.com

- Which one of the following reactions produces a compound that could be used as a monomer in the formation of an addition polymer that contains chlorine atoms?
 - **A** The addition of one molecule of HCl to 1,2-dichloroethene.
 - **B** The addition of one molecule of HCl to propene.
 - C The elimination of one molecule of HCl from 2-chloropropane.
 - **D** The elimination of one molecule of HCl from 1,2-dichloroethane.
- 12 Which one of the following reacts with butanedioic acid to form a condensation polymer?
 - **A** The product from the reaction of epoxyethane with water.
 - **B** The product from the reaction of ethanoic anhydride with water.
 - C The product from the reaction of ethanal with HCN
 - **D** The product from the reaction of ethene with bromine.
- Which one of the following is formed when an excess of bromomethane reacts with diethylamine?

$$\begin{array}{ccc}
\mathbf{C} & \text{CH}_3 \\
\text{CH}_3\text{CH}_2 - \mathbf{N} - \text{CH}_3 \\
\text{CH}_3
\end{array} \right]^+ \text{Br}^-$$

$$\begin{array}{c|c} \textbf{D} & \begin{bmatrix} \text{CH}_3 \\ \text{CH}_3\text{CH}_2 - \text{N} - \text{CH}_2\text{CH}_3 \\ \text{CH}_3 \end{bmatrix}^+ \text{Br}^- \end{array}$$

14 A sequence of reactions is shown below.

A correct list of substances for the sequence is

	Reaction 1	Reaction 2	Reaction 3	Reaction 4
A	CH ₃ COCl	NaBH ₄	conc H ₂ SO ₄	Cl ₂
В	AlCl ₃	HCl	NaOH	Cl ₂
C	AlCl ₃	NaBH ₄	conc H ₂ SO ₄	HCl
D	AlCl ₃	NaBH ₄	conc H ₂ SO ₄	Cl ₂

15 An equation for the incomplete combustion of butane in oxygen is

$$C_4H_{10} + 4\frac{1}{2}O_2 \rightarrow 4CO + 5H_2O$$

The volume in ${\rm dm}^3$ of oxygen at 295 K and 100 kPa required to burn 0.10 mol of butane to form steam and carbon monoxide only is

- **A** 8.6
- **B** 11
- **C** 12
- **D** 16

16
$$C_6H_5COC1 + C_6H_5OH \rightarrow C_6H_5COOC_6H_5 + HC1$$

 $(M_r = 140.5)$ $(M_r = 198)$

In the reaction above, $1.20\,\mathrm{g}$ of the acyl chloride produced $0.800\,\mathrm{g}$ of the ester. The percentage yield was

- **A** 47.3
- **B** 66.7
- **C** 71.0
- **D** 94.0
- 17 The compound CF₃CHBrCl is a general anaesthetic called halothane. The number of structural isomers, including halothane, having the molecular formula C₂HBrClF₃ is
 - **A** 2
 - **B** 3
 - **C** 4
 - **D** 5
- **18** Which one of the following statements is correct?
 - A HI has a higher boiling point than HCl because HI has stronger hydrogen bonding.
 - **B** PCl₅ is hydrolysed by water to form a weakly acidic solution.
 - C The reducing ability of the halide ions increases as the size of the anion increases.
 - **D** The solubility of the Group II hydroxides decreases as the size of the cation increases.
- 19 Which one of the following statements is correct?
 - **A** $[Al(H_2O)_6]^{3+}(aq)$ will react with an excess of $NH_3(aq)$ to form $[Al(NH_3)_6]^{3+}(aq)$.
 - **B** In the electrolysis of aluminium oxide, aluminium metal and oxygen gas are formed in the mole ratio 2:3.
 - C When concentrated $NH_3(aq)$ is added to AgBr, $[Ag(NH_3)_2]^+(aq)$ is formed.
 - **D** In the reduction of TiCl₄ by sodium, nitrogen is used as an inert atmosphere.

20 Consider the half-equations given below.

$$VO_{2}^{+}(aq) + 2H^{+}(aq) + e^{-} \rightarrow VO^{2+}(aq) + H_{2}O(l)$$

$$Cr_{2}O_{7}^{2-}(aq) + 14H^{+}(aq) + 6e^{-} \rightarrow 2Cr^{3+}(aq) + 7H_{2}O(l)$$

$$+1.33$$

$$Co^{3+}(aq) + e^{-} \rightarrow Co^{2+}(aq)$$

$$+1.82$$

Which one of the following statements is **not** correct?

- **A** When $VO_2^+(aq)$ forms $VO^{2+}(aq)$, the oxidation state of vanadium changes from +5 to +4.
- **B** Acidified potassium dichromate(VI) can oxidise $VO^{2+}(aq)$ to $VO_2^+(aq)$ under standard conditions.
- C The electron arrangement of a Co^{3+} ion is [Ar]3d⁶.
- **D** An acidified solution containing $VO_2^+(aq)$ ions can oxidise $Co^{2+}(aq)$ to $Co^{3+}(aq)$ under standard conditions.

Multiple completion questions

For each of Questions **21** to **40**, **one or more** of the options given may be correct. Select your answer by means of the following code.

- A if 1, 2 and 3 only are correct.
- **B** if **1** and **3** only are correct.
- C if 2 and 4 only are correct.
- **D** if **4** only is correct.

	Directions s	ummarised	
A	В	C	D
1, 2 and 3 only correct	1 and 3 only correct	2 and 4 only correct	4 only correct

- 21 A substitution reaction occurs when ammonia reacts with
 - 1 $[Cu(H_2O)_6]^{2+}$
 - **2** BF₃
 - 3 CH₃Br
 - 4 HBr
- 22 Hydrocarbons which contain 85.7% by mass of carbon include

1

2

3

$$\left\langle \right\rangle$$
 — CH_3

4
$$H_3C-C \equiv C-CH_3$$

	Directions s	ummarised	
A	В	C	D
1, 2 and 3 only correct	1 and 3 only correct	2 and 4 only correct	4 only correct

23 Gas X reacts with gas Y according to the following equation

$$X(g) + Y(g) \rightarrow XY(g)$$

The rate equation for the reaction is

$$rate = k[X][Y]^2$$

At constant temperature, correct statements include

- doubling the concentration of X, keeping the concentration of Y constant, will double the rate of reaction.
- 2 halving the concentration of Y, keeping the concentration of X constant, will decrease the rate by a factor of 8.
- 3 trebling the concentration of both X and Y will increase the rate by a factor of 27.
- 4 quadrupling the concentration of Y, keeping the concentration of X constant, will increase the rate by a factor of 64.

	Directions s	ummarised	
A	В	С	D
1, 2 and 3 only correct	1 and 3 only correct	2 and 4 only correct	4 only correct

Questions 24 and 25

The diagrams **P**, **Q**, **R** and **S** show how a change in conditions affects the Maxwell-Boltzmann distribution of molecular energies for gas G. In each case, the original distribution is shown by a solid line and the distribution after a change has been made is shown by a dashed line.

- 24 Correct statements at constant volume include
 - 1 the change shown in diagram **P** occurs when the temperature is decreased.
 - 2 the change shown in diagram **Q** occurs when a catalyst is used.
 - 3 the change shown in diagram **R** occurs when the temperature is increased.
 - 4 the change shown in diagram **S** occurs when the pressure of G is decreased at constant temperature.
- 25 Diagrams that illustrate changes which alter the value of the rate constant for the decomposition of gas G include
 - 1 P
 - 2 Q
 - 3 R
 - 4 S

	Directions s	ummarised	
A	В	C	D
1, 2 and 3 only correct	1 and 3 only correct	2 and 4 only correct	4 only correct

- 26 Substances that form acidic solutions when added to water include
 - 1 AlCl₃
 - 2 Cl₂
 - 3 CH₃COCl
 - 4 NaCl
- 27 Species with at least one bond angle of 90° include
 - 1 XeF_4
 - 2 PF₅
 - 3 $[Co(NH_3)_6]^{3+}$
 - **4** Si(CH₃)₄
- 28 Solutions that form bubbles of a gas with solid Na₂CO₃ include
 - 1 CH₃CHO(aq)
 - 2 HCOOH(aq)
 - 3 CrCl₂(aq)
 - 4 CrCl₃(aq)
- 29 Chlorine trifluoride can be decomposed into its elements:

Correct statements include

- 1 the decomposition is a redox reaction.
- when an equilibrium mixture is heated its colour fades.
- 3 when the pressure of an equilibrium mixture is decreased more Cl_2 is formed.
- 4 the decomposition has a negative entropy change.

	Directions s	ummarised	
A	В	C	D
1, 2 and 3 only correct	1 and 3 only correct	2 and 4 only correct	4 only correct

30 Consider the following reaction scheme.

Types of mechanism involved in this sequence include

- 1 electrophilic addition.
- 2 electrophilic substitution.
- 3 nucleophilic substitution.
- 4 nucleophilic addition-elimination.

	Directions s	ummarised	
A	В	C	D
1, 2 and 3 only correct	1 and 3 only correct	2 and 4 only correct	4 only correct

- 31 On melting, covalent bonds must break in
 - 1 poly(ethene).
 - 2 bromine.
 - 3 sulphur dioxide.
 - 4 silicon dioxide.
- 32 The artificial sweetener aspartame has the structure

Correct statements about aspartame include

- 1 it can form a zwitterion.
- 2 it can undergo alkaline hydrolysis.
- 3 it contains an amide link.
- 4 it has three chiral carbon atoms.
- 33 Species that can act as both oxidising and reducing agents include
 - 1 CH₃CHO
 - **2** Fe
 - 3 Fe^{2+}
 - **4** Fe³⁺
- 34 Reactants that form an organic product which has an asymmetric carbon atom include
 - 1 but-2-ene and HBr
 - 2 propanone and NaBH₄
 - 3 propanal and HCN
 - 4 epoxyethane and H₂O

Directions summarised						
A	В	С	D			
1, 2 and 3 only correct	1 and 3 only correct	2 and 4 only correct	4 only correct			

35 Compound X has the following characteristics

- it has an infra-red spectrum with a strong absorption at around 1700 cm⁻¹
- it has a proton n.m.r. spectrum with only two peaks
- it has a mass spectrum with a major peak at m/z = 57

Compound X could be

- 1 butanone.
- 2 pentan-3-one.
- 3 propanal.
- 4 2,2-dimethylpropanal.

36 The drug tamoxifen, which is used in the treatment of cancer, has the structure

$$C = C$$
 CH_2CH_3
 $C = C$
 CH_2CH_3
 CH_3
 CH_3

Correct statements about tamoxifen include

- 1 it can undergo electrophilic addition with bromine.
- 2 it has a stereoisomer.
- 3 it can undergo electrophilic substitution with ethanoyl chloride.
- 4 it is insoluble in hydrochloric acid.

Directions summarised						
A	В	C	D			
1, 2 and 3 only correct	1 and 3 only correct	2 and 4 only correct	4 only correct			

37 Ionone, shown below, is a compound responsible for the smell of raspberries.

Mechanisms involved in reactions of ionone include

- 1 electrophilic addition.
- 2 electrophilic substitution.
- 3 nucleophilic addition.
- 4 nucleophilic substitution.

38 Functional group isomers include

1	CH ₃ CH ₂ CHBrCH ₃	and	CH ₃ CH ₂ CH ₂ CH ₂ Br
2	CH₃CH₂COOH	and	HCOOCH ₂ CH ₃
3	CH ₃ CH ₂ CH(NH ₂)COOH	and	H ₂ NCH ₂ CH ₂ CH ₂ COOH
4	CH2CH2OCH2CH2	and	CH ₂ CH(OH)CH ₂ CH ₂

39 Correct statements include

- 1 when SiCl₄ is added to water, a precipitate is formed.
- 2 sulphur has a higher melting point than phosphorus because the intermolecular attractions are stronger.
- 3 when $AlCl_3$ is dissolved in water, $[Al(H_2O)_5(OH)]^{2+}(aq)$ is one of the ions formed.
- 4 when concentrated H₂SO₄ reacts with solid NaBr, the only gaseous product is HBr.

Directions summarised						
A	В	С	D			
1, 2 and 3 only correct	1 and 3 only correct	2 and 4 only correct	4 only correct			

40 Consider the following reaction, which involves the breaking of only one covalent bond.

$$O_2N-NO_2(g) \rightarrow 2NO_2(g)$$

Correct statements include

- 1 ΔH is positive.
- 2 ΔG is always positive.
- 3 ΔS is positive.
- 4 the reaction is feasible at any temperature.

END OF QUESTIONS

There are no questions printed on this page