Surname			Other	Names			
Centre Number				Candid	ate Number		
Candidate Signature	•					-	

General Certificate of Education June 2007 Advanced Level Examination

CHEMISTRY Unit 6a Synoptic Assessment

Monday 25 June 2007 9.00 am to 10.00 am

For this paper you must have:

- an objective test answer sheet,
- a calculator.

Time allowed: 1 hour

Instructions

- Use a blue or black ball-point pen. Do not use pencil.
- Fill in the boxes at the top of this page.
- Answer all 40 questions.
- For each item there are four responses. When you have selected the response which you think is the best answer to a question, mark this response on your answer sheet.
- Mark all responses as instructed on your answer sheet. If you wish to change your answer to a question, follow the instructions on your answer sheet.
- Do all rough work in this book, **not** on your answer sheet.
- Make sure that you hand in **both** your answer sheet **and** this answer book at the end of this examination.
- The Periodic Table/Data Sheet is provided on pages 3 and 4. Detach this perforated sheet at the start of the examination.

Information

- Each correct answer will score one mark. No deductions will be made for wrong answers.
- This paper carries 10 per cent of the total marks for Advanced Level.

Advice

• Do not spend too long on any question. If you have time at the end, go back and answer any question you missed out.

For Examiner's Use

Multiple choice questions

Each of Questions 1 to 21 consists of a question or an incomplete statement followed by four suggested answers or completions. You are asked to select the most appropriate answer in each case.

Questions 1 and 2

 $P(g) \Longrightarrow 2Q(g) \qquad \Delta H^{\circ}$ is positive

- 1 The mole fraction of Q in the above equilibrium can be increased by
 - **A** decreasing the temperature.
 - **B** adding a catalyst.
 - **C** increasing the volume of the reaction vessel.
 - **D** increasing the pressure.
- **2** 1.0 mol of P was placed in a sealed vessel and left until the above equilibrium was established. At equilibrium, a total of 1.5 mol of gas were present. The mole fraction of Q at equilibrium was
 - A 0.33B 0.50
 - **C** 0.67
 - **D** 0.75
- 3 The following compounds all have $M_r = 88$. Which one contains over 60% by mass of carbon and also exhibits hydrogen bonding?
 - A H₂N(CH₂)₄NH₂
 - **B** CH₃CH₂CH₂COOH
 - C CH₃CH₂CH₂CH₂CH₂OH

www.theallpapers.com

The Periodic Table of the Elements

■ The atomic numbers and approximate relative atomic masses shown in the table are for use in the examination unless stated otherwise in an individual question.

0 IIA I/	4.0 He Helium) 19.0 20.2 F Ne	gen Fluorine Neon 9 10	35.5 39.9 Ar	bhur Chlorine Argon 17 18	e Br 83.8	nium Bromine Krypton 35 36	5 126.9 131.3 e l Xe	rium Iodine Xenon 53 54) 210.0 222.0 O At Rn	nium Astatine Radon 85 86		n 173.0 175.0 TYB Lu	lium Ytterbium Lutetium 70 71	d (259) (260) d No Lr	levium Nobelium Lawrenciun
>		14.0 N	7 Nitrogen Oxy	31.0 32.1 S	Phosphorus Sulp 15	74.9 79.0 As S	um Arsenic Seler 33 34	121.8 127.6 Sb To	Antimony Tellui 51	209.0 210.0 Bi	Bismuth Polor 83 84		167.3 168.9 Er Tr	n Erbium Thuli 68 69	(257) (258) Fm M	am Fermium Mendel
≥ ■		B 12:0 C C	oron Carbor 6	AI 28.1 Si Si	minium Silicon 14	7 72.6 Ga Ge	allium Germanit 32	.8 118.7 In Sn	dium Tin	TI 207.2	allium Lead 82		.5 164.9 JV Ho	brosium Holmiur. 67	.1 (252) Cf Es	ornium Einsteiniu
		10.5	5 ^B	27.0	Alur 13	65.4 69.7 Zn (Zinc Ga 30 31	112.4 114 Cd	Cadmium In 48	200.6 204	Mercury Thi 80 81		158.9 162. Tb L	n Terbium Dysp 65 66	247.1 252 Bk (Berkelium Calif
						i 63.5 Cu	kel Copper 29	d 107.9	Jium Silver	t Au	T9 29 79		J 157.3	ium Gadolinium. 64	n 247.1 Cm	cium Curium
						8.9 58.7 Co DI	Cobalt Nich	02.9 106.4 Pc	Rhodium Pallac	92.2 195.1	Iridium Platir 7 78		50.4 152.0 Sm EL	Samarium Europ 2 63	39.1 243.1 Pu An	Plutonium Americ
]			55.8 Fe	se Iron 26 2	101.1 Ru	m Ruthenium	190.2 OS	n Osmium 76 7		144.9 Pm	m Promethium 5 61 63	237.0 2	Neptunium
		6.9 	Lithium 3			54.9 Mn	um Manganes 25	98.9 Tc	num Technetiur	186.2 Re	en Rhenium 75		144.2 Nd	nium Neodymiur 60	238.0 U	ium Uranium
		nic mass —	Der			⁹ 52.0 Cr	adium Chromi 24	95.9 Nb 95.9	bium Molybde	.9 183.9 Ta V	talum Tungst		.1 2 e Pr	erium Praseodyn 59	.0 231.0 Fh Pa	orium Protactin
	Key	relative aton	atomic numk			47.9 50.6 Ti	22 Titanium Var 23	91.2 92.6 Zr	Zirconium Nic 40 41	178.5 180 Hf	Hafnium Tar 72 73		140	58 58	232	Ч́Е
	-	_	с, , , , , , , , , , , , , , , , , , ,		Ę	45.0 SC	n Scandium 21	88.9	m Yttrium	138.9 La	Lanthanum 57 *	227 Ac Actinium 89 †		nanides	-	inides
=	H drogen	Li 9.0	thium Berylliur 4	0 24.3 Na Mg	odium Magnesiu 12	1 ^{40.1}	assium Calciun 20	5 87.6 Rb Sr	bidium Strontiu	.9 137.3 Cs Ba	tesium Barium 56	Fr 226.0 Fr Ra		8 - /1 Lant		0 - 103 Act

3

Gas constant
$$R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$$

Table 1 Proton n.m.r chemical shift data

_

Type of proton	ð/ppm
RCH ₃	0.7–1.2
R ₂ CH ₂	1.2–1.4
R ₃ CH	1.4–1.6
RCOCH ₃	2.1–2.6
ROCH ₃	3.1–3.9
RCOOCH ₃	3.7–4.1
ROH	0.5–5.0

Table 2 Infra-red absorption data

Bond	Wavenumber/cm ⁻¹
С—Н	2850-3300
С—С	750-1100
C=C	1620–1680
C=O	1680-1750
С—О	1000-1300
O—H (alcohols)	3230-3550
O—H (acids)	2500-3000

4 CaCl₂(s) has a standard lattice dissociation enthalpy of +2237 kJ mol⁻¹

The standard enthalpy of hydration values for $Ca^{2+}(g)$ and $Cl^{-}(g)$ are -1650 kJ mol⁻¹ and -364 kJ mol⁻¹, respectively.

The standard enthalpy of solution of CaCl₂(s) is

A -223 kJ mol^{-1}

- \mathbf{B} -141 kJ mol⁻¹
- \mathbf{C} +141 kJ mol⁻¹
- \mathbf{D} +223 kJ mol⁻¹
- 5 Ions of two isotopes of the transition metal nickel are shown below.

$${}^{58}_{28}\mathrm{Ni}^{2+}$$
 ${}^{60}_{28}\mathrm{Ni}^{2+}$

Which one of the following statements is correct?

- A The electron arrangement of both these Ni²⁺ ions is $1s^22s^22p^63s^23p^63d^64s^2$.
- **B** The ${}^{60}_{28}$ Ni²⁺ ion will have more protons in its nucleus than the ${}^{58}_{28}$ Ni²⁺ ion.
- C In the same strength magnetic field, the ${}^{60}_{28}$ Ni²⁺ ion will be deflected more than the ${}^{58}_{28}$ Ni²⁺ ion.
- **D** These Ni^{2+} ions have the same number of electrons but a different number of neutrons.

Questions 6 and 7

In questions 6 and 7 consider the data below.

	E^{\ominus}/V
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.34
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.25
$Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$	-0.76

- 6 The e.m.f. of the cell $Cu(s)|Cu^{2+}(aq)||Ni^{2+}(aq)|Ni(s)$ is
 - A 0.59 V
 - **B** 0.09 V
 - C -0.09 V
 - **D** -0.59 V

7 Which one of the following reactions occurs?

Questions 8 and 9

The following reaction is used in industry to prepare aspirin

- 8 Which one of the following statements about ethanoic anhydride is **not** correct?
 - A It has two singlets only in its proton n.m.r. spectrum.
 - **B** It undergoes hydrolysis in water to give a single product with a pH value less than 7.
 - **C** It has a strong absorption at about 1720 cm^{-1} in its infra-red spectrum.
 - **D** It has a major fragment peak at m/z = 43 in its mass spectrum.
- 9 2-Hydroxybenzoic acid and aspirin are both white solids.Which one of the following would **not** distinguish between pure samples of these two solids?
 - A comparing the laboratory-determined melting points to data-book values
 - **B** comparing infra-red spectra at $3250 \,\mathrm{cm}^{-1}$
 - C comparing their effects on sodium carbonate
 - **D** comparing the m/z values of their molecular ions
- 10 Which one of the following statements is correct?
 - **A** There are only three isomers of dichloropropane.
 - **B** There are geometric isomers of 2-methylpent-2-ene.
 - **C** There are optical isomers of 2-aminopropanoic acid.
 - **D** Enantiomers can be distinguished using the fingerprint region of their infra-red spectra.

11 Aluminium chloride acts as a weak monoprotic acid in aqueous solution and has a K_a value of $1.26 \times 10^{-5} \,\mathrm{mol}\,\mathrm{dm}^{-3}$

What concentration, in mol dm⁻³, of aluminium chloride will produce a solution with a pH value of 2.60?

- **A** 0.0050
- **B** 0.50
- **C** 0.53
- **D** 2.0
- 12 Which one of the following statements is correct?
 - A AlCl₃ has a higher melting point than Al_2O_3
 - **B** The Al_2Cl_6 dimer contains two co-ordinate bonds.
 - \mathbf{C} AlCl₃ is pyramidal.
 - **D** The AlCl₃ catalyst acts as an electron pair donor in the acylation of benzene.
- **13** Which one of the following isomeric alkenes is formed when 3-bromo-2-methylpentane reacts with ethanolic potassium hydroxide?
 - A 3-methylpent-1-ene
 - **B** 3-methylpent-2-ene
 - **C** 4-methylpent-2-ene
 - **D** 2-ethylbut-1-ene

14 Sulphur dichloride oxide, SOCl₂, can be used to convert alcohols into chloroalkanes.

$$CH_3CH_2OH + O = S \xrightarrow{Cl} CH_3CH_2Cl + O = S = O + HCl$$

Bond	Mean bond enthalpy/kJmol ⁻¹
C–Cl	338
С–О	364
H–Cl	431
O–H	464
S–Cl	277
S=O	523
C–C	348
С–Н	412

The enthalpy change, in $kJ \mod^{-1}$, for the gas phase reaction between ethanol and sulphur dichloride oxide using the bond enthalpies given above is

- A –187
- **B** –90
- **C** +90
- **D** +187

Turn over for the next question

Questions 15 to 17

A car airbag contains sodium azide, NaN₃, and potassium nitrate. Sodium azide decomposes to produce nitrogen gas and sodium metal.

 $2NaN_3(s) \longrightarrow 2Na(s) + 3N_2(g)$

The sodium produced reacts immediately with the potassium nitrate producing more nitrogen.

 $10Na(s) + 2KNO_3(s) \longrightarrow N_2(g) + 5Na_2O(s) + K_2O(s)$

- 15 The total number of moles of nitrogen produced by 1.0 mol of sodium azide in this sequence is
 - **A** 1.0
 - **B** 1.5
 - **C** 1.6
 - **D** 4.0
- 16 The number of moles of nitrogen needed to produce a pressure of 200 kPa in an airbag of volume 0.060 m^3 at a temperature of 27 °C is
 - **A** 0.21
 - **B** 4.8
 - **C** 54
 - **D** 4800
- 17 An element which undergoes oxidation in the above reactions is
 - A sodium in NaN₃
 - **B** potassium in KNO₃
 - **C** oxygen in KNO₃
 - **D** nitrogen in NaN₃

Questions 18 and 19

Use the curves below, obtained using equal volumes of solutions of two monoprotic acids **HX** and **HY**, to answer Questions **18** and **19**.

Volume of $0.10 \text{ mol dm}^{-3} \text{ NaOH}(aq) \text{ added}/\text{cm}^{-3}$

- 18 Which one of the following statements about a solution of HX is correct?
 - A It is less concentrated and contains a weaker acid than the solution of HY.
 - **B** It is more concentrated and contains a stronger acid than the solution of HY.
 - C It is more concentrated and contains a weaker acid than the solution of HY.
 - **D** It is less concentrated and contains a stronger acid than the solution of HY.

19 The value, in mol dm⁻³, of K_a for the acid HX is

- A 1.3×10^{-2}
- **B** 1.0×10^{-3}
- **C** 1.3×10^{-5}
- **D** 8.3×10^{-6}

- 20 Which one of the following statements about carbon monoxide is not correct?
 - **A** It has a positive enthalpy of combustion.
 - **B** It is formed during the incomplete combustion of alkanes.
 - **C** It is oxidised to carbon dioxide when heated strongly with iron(III) oxide.
 - **D** Compared with an oxygen molecule, it can form a stronger co-ordinate bond with iron(II) in haemoglobin.
- 21 Locate the element tungsten (W) in the Periodic Table.

Which one of the following explains why tungsten is a poor catalyst?

- **A** It exists only in one oxidation state.
- **B** It has an incomplete d sub-level.
- **C** It has no active sites on its surface.
- **D** Reacting molecules are adsorbed strongly onto its surface.

Multiple completion questions

For each of Questions **22** to **40**, **one or more** of the options given may be correct. Select your answer by means of the following code.

A	if 1 , 2 and 3 only are correct.	Directions summarised					
B	if 1 and 3 only are correct.	Α	В	С	D		
С	if 2 and 4 only are correct.	1, 2 and 3	1 and 3	2 and 4	4 only		
D	if 4 only is correct.	only correct	only correct	only correct	correct		

22 The extraction of titanium from titanium(IV) oxide involves two reactions represented by the following equations

 $\begin{array}{rcl} \mathrm{TiO}_2 \ + \ 2\mathrm{C} \ + \ 2\mathrm{Cl}_2 \ \longrightarrow \ \mathrm{TiCl}_4 \ + \ 2\mathrm{CO} \\ \\ \mathrm{TiCl}_4 \ + \ 4\mathrm{Na} \ \longrightarrow \ \mathrm{Ti} \ + \ 4\mathrm{NaCl} \end{array}$

Correct statements about the extraction include

- 1 149.6 kg of chlorine are needed to make 200.0 kg of titanium(IV) chloride ($M_r = 189.9$).
- 2 both of the above equations represent redox reactions.
- 3 titanium is expensive because the extraction involves a batch process.
- 4 the second reaction is carried out in an atmosphere of nitrogen to prevent oxidation of the product.
- **23** Anhydrous compounds of Period 3 elements that react with water to give solutions with a pH value less than 5 include
 - 1 ionic chlorides.
 - 2 covalent chlorides.
 - 3 ionic oxides.
 - 4 covalent oxides.

Directions summarised							
A B C D							
1, 2 and 3 only correct	1 and 3 only correct	2 and 4 only correct	4 only correct				

- 24 Correct statements about concentrated sulphuric acid include
 - 1 it reacts with butan-2-ol to form but-1-ene.
 - 2 it is reduced to hydrogen sulphide by solid sodium iodide.
 - 3 it can protonate concentrated nitric acid.
 - 4 it reacts with sodium chloride to form chlorine gas.

Questions 25 to 27 are about the synthesis and reactions of compounds M and N shown below.

- 25 Correct statements about the reaction scheme include
 - 1 Step (i) could be achieved using chlorine in the presence of ultra-violet light.
 - 2 Step (ii) could be achieved using potassium cyanide.
 - 3 Step (iv) could be achieved using hydrogen in the presence of nickel.
 - 4 K could be converted directly into N using ammonia.
- 26 Correct statements about M include
 - 1 it can form a condensation polymer with 1,6-diaminohexane.
 - 2 complete reaction of 0.0100 mol of **M** requires 10.0 cm³ of 1.00 mol dm⁻³ NaOH(aq)
 - 3 it can act as a bidentate ligand.
 - 4 its systematic name is ethanedioic acid.

www.theallpapers.com

Directions summarised						
A	В	С	D			
1, 2 and 3 only correct	1 and 3 only correct	2 and 4 only correct	4 only correct			

- 27 Correct statements about N include
 - 1 it exists as the ion HOOCCH₂CH₂NH $^+_3$ in a solution at pH 14.
 - 2 it reacts with methanol to form a tetraalkylammonium salt.
 - 3 it reacts with ethanoyl chloride to form an ester.
 - 4 it undergoes self-polymerisation.
- 28 Results which support the identification of an unknown compound as propyl methanoate include
 - 1 a strong absorption in its infra-red spectrum at $1740 \,\mathrm{cm}^{-1}$.
 - 2 a singlet peak integrating for three protons in its proton n.m.r. spectrum.
 - 3 the compound contains 54.54% of carbon by mass.
 - 4 it effervesces with sodium hydrogencarbonate.
- **29** Consider the species in the following equation.

 $[\mathrm{Ti}(\mathrm{H}_2\mathrm{O})_4\mathrm{Cl}_2]^+(\mathrm{aq}) + 2\mathrm{H}_2\mathrm{O}(\mathrm{l}) \implies [\mathrm{Ti}(\mathrm{H}_2\mathrm{O})_6]^{3+}(\mathrm{aq}) + 2\mathrm{Cl}^-(\mathrm{aq})$

Correct statements include

- 1 water acts as a Lewis base.
- 2 the complex ions are both octahedral.
- 3 the $[Ti(H_2O)_6]^{3+}$ ion can act as a Brønsted–Lowry acid.
- 4 the electron arrangement of the Ti^{3+} ion is $[Ar]4s^{1}$

Directions summarised							
A B C D							
1, 2 and 3 only correct	1 and 3 only correct	2 and 4 only correct	4 only correct				

30 Optical isomerism is shown by

- 31 Species with four or more atoms in the same plane include
 - 1 cisplatin.
 - 2 but-2-ene.
 - 3 benzene.
 - 4 an ammonium ion.

Directions summarised							
A B C D							
1, 2 and 3 only correct	1 and 3 only correct	2 and 4 only correct	4 only correct				

32 For the reaction represented by the equation shown below,

 $2H_2(g) + 2NO(g) \longrightarrow 2H_2O(g) + N_2(g)$

the rate equation is

rate =
$$k[H_2][NO]^2$$

Assuming that each 10 K rise in temperature doubles the rate, which of the following will increase the rate by a factor of four?

- 1 a 20 K temperature increase, keeping [H₂] and [NO] constant.
- 2 a 10 K temperature increase with $2 \times [H_2]$, keeping [NO] constant.
- 3 no temperature change but with $4 \times [H_2]$, keeping [NO] constant.
- 4 a 10 K temperature increase with $2 \times [NO]$, keeping [H₂] constant.

33 Which of the following increase(s) down Group VII?

- 1 the electronegativity of the halogen
- 2 the lattice dissociation enthalpy of the sodium halide
- 3 the oxidising ability of the halogen
- 4 the strength of the halide ion as a reducing agent
- **34** Correct statements include
 - 1 the base strength increases from methylamine to ammonia to phenylamine.
 - 2 the melting point increases from pentan-3-one to pentan-2-ol to 2-aminopropanoic acid.
 - 3 the carbon to carbon bond enthalpy increases from ethene to benzene to ethane.
 - 4 the pH of a 1.0 mol dm^{-3} solution increases from sulphuric acid to hydrochloric acid to ethanoic acid.

www.theallpapers.com

Directions summarised					
A	В	С	D		
1, 2 and 3 only correct	1 and 3 only correct	2 and 4 only correct	4 only correct		

- 35 Solids that have a macromolecular structure include
 - 1 MgO
 - **2** C₁₇H₃₅COONa
 - **3** P₄O₁₀
 - 4 Si

36 Equations that represent redox reactions include

- 1 $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$
- 2 $[V(H_2O)_4Cl_2]^+ + 2H_2O \rightarrow [V(H_2O)_6]^{3+} + 2Cl^-$
- 3 Mg + S \rightarrow MgS
- 4 $CaCO_3 + SiO_2 \rightarrow CaSiO_3 + CO_2$

Directions summarised					
Α	В	С	D		
1, 2 and 3 only correct	1 and 3 only correct	2 and 4 only correct	4 only correct		

Questions 37 and 38

Use the following reaction scheme to answer questions 37 and 38.

- 37 Compounds that have stereoisomers include
 - 1 P
 - 2 Q
 - **3** R
 - 4 S
- **38** Types of reaction in the scheme include
 - 1 dehydration.
 - 2 hydrogenation.
 - 3 esterification.
 - 4 alkylation.

Directions summarised					
A	В	С	D		
1, 2 and 3 only correct	1 and 3 only correct	2 and 4 only correct	4 only correct		

39 Conversions that require four moles of hydrogen gas per mole of starting material include

- 40 Correct statements about chloroethanoic acid include
 - 1 it gives an immediate white precipitate with silver nitrate solution.
 - 2 it gives a silver mirror with Tollens' reagent.
 - 3 it gives colourless fumes on addition of water.
 - 4 a mixture of acidified potassium dichromate(VI) and the acid remains orange on warming.

END OF QUESTIONS