Surname										Other Names
Centre Number						Candidate Number				
Candidate Signature										

General Certificate of Education

June 2003
Advanced Level Examination

CHEMISTRY
 Unit 6(b) Practical Examination

Wednesday 21 May 20039.00 am to 11.00 am

In addition to this paper you will require:

- a calculator.

Time allowed: 2 hours

Instructions

- Use blue or black ink or ball-point pen.
- Fill in the boxes at the top of this page.
- Carry out all three exercises.
- Answer all questions in the spaces provided. All working must be shown.
- Do all rough work in this book. Cross through any work you do not want marked.
- Take careful note of all the instructions given in each exercise.
- The Periodic Table/Data Sheet is provided on pages 3 and 4. Detach this perforated sheet at the start of the examination.

Information

- The use of note books and laboratory books is not permitted.
- The maximum mark for this paper is 30 .
- The skills which are being assessed are

Skill 1 Planning (8 marks)
Skill 2 Implementing (8 marks)
Skill 3 Analysing (8 marks)
Skill 4 Evaluating (6 marks)

- This paper carries 5 per cent of the total marks for Advanced Level.
- You will be assessed on your ability to use an appropriate form and style of writing, to organise relevant information clearly and coherently, and to use specialist vocabulary, where appropriate.

CHM6/P

$$
\begin{gathered}
\text { ASSESSMENT and } \\
\text { OUALIFICATIONS } \\
\text { ALLIANCE }
\end{gathered}
$$

This paper consists of the following.
Exercise 1 Implementing The titration of a solution of potassium iodate(V).
Exercise 2 Analysing and Evaluating The analysis of a mixture of iron(II) and iron(III) ions.
Exercise 3 Planning The preparation of (4-methylphenyl)phenylmethanone.

An essential part of any practical work is to plan for the most efficient use of the time available. There is enough time to complete the exercises set provided that a sensible approach is used.

You are advised to spend approximately
40 minutes on Exercise 1
40 minutes on Exercise 2
40 minutes on Exercise 3.

3
The Periodic Table of the Elements
The atomic numbers and approximate relative atomic masses shown in the table are for use in the examination unless stated otherwise in an individual question.

	II											III	IV	V	VI	VII	0
		Key															$\left.\right\|_{2} ^{4.0} \begin{aligned} & \text { He } \\ & { }_{2} \text { Helium } \end{aligned}$
$\sum \underbrace{6.9}_{3} \begin{gathered} 9 \mathrm{Li} \\ \text {-ithium } \end{gathered}$	9.0 4 Be Beryllium		relative atomic mass atomic number \qquad									$\int_{5} \begin{array}{\|c} 10.8 \\ \text { Boron } \end{array}$	${ }_{6}^{12.0} \mathbf{C}$	$\underbrace{14.0}_{7} \mathbf{N}$	$\underbrace{16.0}_{8} \begin{gathered} \text { Oxygen } \end{gathered}$	$\left.\right\|_{9} ^{19.0} \text { F Fluorine }$	$\begin{aligned} & 20.2 \\ & \text { Ne } \\ & 10 \end{aligned}$
F2\$.0	24.3											27.0 AI Aluminium 13	${\underset{\text { Silicon }}{28.1}}_{14}^{\text {Si }}$	31.0 Phosphorus 15		35.5 Chlorine 17	$\underbrace{\begin{array}{c} 39.9 \\ \text { Argon } \end{array}}_{18}$
$3 \$.1$ K Pptassium 1ϕ	$\begin{aligned} & 40.1 \\ & \text { Calcium } \\ & 20 \end{aligned}$	45.0 Sc Scandium 21	$\begin{gathered} 47.9 \\ \begin{array}{c} \text { Ti } \\ \text { Titanium } \\ 22 \end{array} \end{gathered}$	$\begin{aligned} & 50.9 \\ & \text { V } \\ & \text { Vanadium } \\ & 23 \end{aligned}$	52.0 Chromium 24	54.9 Mn Manganese 25		58.9 27 Cobalt	$\begin{array}{\|l} 58.7 \\ \mathbf{N i}^{5} \mathrm{Nickel} \\ 28 \end{array}$	$\begin{aligned} & 63.5 \\ & \begin{array}{c} \text { Cu } \\ \text { Copper } \\ 29 \end{array} \end{aligned}$	$\begin{array}{\|c} 65.4 \\ \text { Zn } \\ \text { Zinc } \end{array}$	$\begin{aligned} & 69.7 \\ & \text { Gallium } \\ & 31 \end{aligned}$	72.6 Ge Germanium 32	74.9 33 As Arsenic	$\begin{aligned} & 79.0 \\ & \text { Se } \\ & \text { Selenium } \\ & 34 \end{aligned}$	79.9 Br Bromine 35	
$8 \$.5$ Rb Rubidium 3	$\begin{aligned} & 87.6 \\ & \text { Sr } \\ & \text { Strontium } \\ & 38 \end{aligned}$	$\begin{array}{\|c} 88.9 \\ \mathbf{Y} \\ 39 \end{array}$	$\begin{aligned} & 91.2 \\ & \text { Zr } \\ & \text { Zirconium } \\ & 40 \end{aligned}$	$\begin{aligned} & 92.9 \\ & \mathbf{N b} \\ & \text { Niobium } \\ & 41 \end{aligned}$	95.9 Mo Molybdenum 42	98.9 Tc Technetium 43		102.9 Rh Rhodium 45	$\begin{aligned} & 106.4 \\ & \text { Pd } \\ & \text { Palladium } \\ & 46 \end{aligned}$	$\begin{array}{\|c} 107.9 \\ \text { Ag } \\ \text { Silver } \\ 47 \end{array}$	112.4 Cadmium 48	$\begin{array}{\|c} \hline 114.8 \\ \text { In } \\ \text { Indium } \\ 49 \end{array}$	$\begin{aligned} & 118.7 \\ & \text { Sn }_{\text {Tin }} \\ & 50 \end{aligned}$	121.8 Sb Antimony 51	$\begin{aligned} & \text { 127.6 } \\ & \text { Te } \\ & \text { Tellurium } \\ & 52 \end{aligned}$	$\begin{array}{\|c} 126.9 \\ \text { I Iodine } \\ 53 \end{array}$	$\begin{aligned} & 131.3 \\ & \text { Xe } \\ & \text { Xenon } \\ & 54 \end{aligned}$
	$\begin{aligned} & 137.3 \\ & \text { Ba } \\ & \text { Barium } \\ & 56 \end{aligned}$	$\begin{aligned} & \text { 138.9 } \\ & \text { La } \\ & \text { Lanthanum } \\ & 57 \quad \star \end{aligned}$	$\begin{aligned} & 178.5 \\ & \text { Hf } \\ & \text { Hafnium } \\ & 72 \end{aligned}$	$\begin{aligned} & \begin{array}{c} 180.9 \\ \text { Ta } \\ \text { Tantalum } \\ 73 \end{array} \end{aligned}$	183.9 Tungsten 74	186.2 Re Rhenium 75	$\begin{aligned} & 190.2 \\ & \text { Os } \\ & \text { Osmium } \\ & 76 \end{aligned}$	$\begin{array}{\|c} 192.2 \\ \text { Ir } \\ \text { Iridium } \\ 77 \end{array}$	$\begin{aligned} & 195.1 \\ & \mathbf{P t} \\ & \text { Platinum } \\ & 78 \end{aligned}$	$\begin{aligned} & 197.0 \\ & \text { Au } \\ & \text { Gold } \\ & 79 \end{aligned}$	$\begin{array}{\|l} 200.6 \\ \text { Hg } \\ \text { Mercury } \\ 80 \end{array}$	$\begin{aligned} & 204.4 \\ & \text { TI } \\ & \text { Thallium } \\ & 81 \end{aligned}$	$\begin{aligned} & 207.2 \\ & \text { Pb } \\ & 82^{\text {Lead }} \end{aligned}$	209.0 Bi Bismuth 83	$\begin{aligned} & 210.0 \\ & \text { Po } \\ & \text { Polonium } \\ & 84 \end{aligned}$	$\begin{aligned} & 210.0 \\ & \text { At } \\ & \text { Astatine } \\ & 85 \end{aligned}$	$\begin{array}{\|c} 222.0 \\ \text { Rn } \\ \text { Radon } \\ 86 \end{array}$
$\begin{array}{\|c} \hline 283.0 \\ \text { Francium } \\ 87 \end{array}$	$\begin{array}{\|l} \hline 226.0 \\ \text { Ra } \\ \text { Radium } \\ 88 \end{array}$	$\begin{gathered} 227 \\ \text { Actinium } \\ 89 \end{gathered}$															

	"̀
$\stackrel{ \pm}{\sim}$	
	${\underset{N Q}{\infty}}_{\infty}^{\infty}$
$\stackrel{\square}{\square}$	
	$\underset{\sim}{c}$
$\text { 은 } \overline{6}$	
σ°	

[^0]Table 1
Proton n.m.r chemical shift data

Type of proton	§/ppm
RCH_{3}	$0.7-1.2$
$\mathrm{R}_{2} \mathrm{CH}_{2}$	$1.2-1.4$
$\mathrm{R}_{3} \mathrm{CH}$	$1.4-1.6$
RCOCH_{3}	$2.1-2.6$
ROCH_{3}	$3.1-3.9$
RCOOCH_{3}	$3.7-4.1$
ROH	$0.5-5.0$

Table 2
Infra-red absorption data

Bond	Wavenumber/cm $\mathbf{c o}^{\mathbf{1}}$
$\mathrm{C}-\mathrm{H}$	$2850-3300$
$\mathrm{C}-\mathrm{C}$	$750-1100$
$\mathrm{C}=\mathrm{C}$	$1620-1680$
$\mathrm{C}=\mathrm{O}$	$1680-1750$
$\mathrm{C}-\mathrm{O}$	$1000-1300$
$\mathrm{O}-\mathrm{H}$ (alcohols)	$3230-3550$
$\mathrm{O}-\mathrm{H}$ (acids)	$2500-3000$

Exercise 1 The titration of a solution of potassium iodate(V).

Skill assessed: Implementing (8 marks)

Introduction

You are provided with an aqueous solution of potassium iodate(V). Determine the exact concentration of this solution by
(a) adding an excess of potassium iodide and dilute sulphuric acid and
(b) titrating the liberated iodine against a $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of sodium thiosulphate solution.

Wear safety glasses at all times.

Assume that all solutions are toxic and corrosive.

Procedure

1. Rinse a burette with the sodium thiosulphate solution provided. Set up the burette and, using a funnel, fill it with the sodium thiosulphate solution provided. Record the initial burette reading.
2. Rinse a pipette with the potassium iodate (V) solution provided. Using this pipette and a pipette filler, transfer $25.0 \mathrm{~cm}^{3}$ of the potassium iodate(V) solution to a $250 \mathrm{~cm}^{3}$ conical flask.
3. Using a measuring cylinder, add approximately $10 \mathrm{~cm}^{3}$ of dilute sulphuric acid to the conical flask.
4. Add one of the samples of potassium iodide provided to the conical flask and swirl the mixture to dissolve the crystals.
5. Add the sodium thiosulphate solution from the burette until the mixture in the conical flask is pale yellow in colour. Add approximately $2 \mathrm{~cm}^{3}$ of starch solution to the conical flask. Continue titrating until the blue colour just disappears. Record the final burette reading in the table below.
(NB: the blue colour may return on standing. You should ignore this.)
6. Rinse the conical flask and repeat the titration until you obtain two titres which are within $0.10 \mathrm{~cm}^{3}$ of each other. (You should do no more than five titrations).

Have one of your final burette readings checked by your supervisor.

7. Tick the titres you will be using in calculating the mean titre. Calculate and record the mean titre.

Final burette reading $/ \mathrm{cm}^{3}$					
Initial burette reading $/ \mathrm{cm}^{3}$					
Volume of thiosulphate solution used $/ \mathrm{cm}^{3}$					
Tick the titres you used in calculating the mean					

Mean titre $=\ldots \ldots \ldots \mathrm{cm}^{3} \quad$| For Examiner's use only | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| M | | C | | P | |
| | T | | A | | |
| | | | | | |

Turn over

Exercise 2 The analysis of a mixture of iron(II) and iron(III) ions.
Skills assessed: Analysing (8 marks) and Evaluating (6 marks)

The concentration of iron(II) ions can be determined by titration using a solution of potassium dichromate(VI) in the presence of dilute sulphuric acid. Half-equations for the redox reactions occurring are given below.

$$
\begin{aligned}
\mathrm{Fe}^{2+} & \longrightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{-} \\
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} & \longrightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

A mixture of iron(II) and iron(III) ions in solution was analysed by the following procedure.
A $25.0 \mathrm{~cm}^{3}$ portion of the iron(II) / iron(III) solution was measured by pipette. This solution was acidified with dilute sulphuric acid and titrated with a $0.0170 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of potassium dichromate(VI). In this titration the dichromate(VI) ions reacted with the iron(II) ions present.

After the titration was complete, all of the iron in the portion was present as iron(III). An excess of zinc was then added to reduce all the iron(III) in the mixture to iron(II).

$$
\mathrm{Zn}+2 \mathrm{Fe}^{3+} \longrightarrow \mathrm{Zn}^{2+}+2 \mathrm{Fe}^{2+}
$$

After filtering to remove the unreacted zinc, the resulting solution of iron(II) was acidified with dilute sulphuric acid and again titrated with the $0.0170 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution of potassium dichromate(VI). In this second titration, the dichromate(VI) ions reacted with all of the iron ions present in the $25.0 \mathrm{~cm}^{3}$ portion of the original mixture.

The experiment was repeated three times and the results for all four experiments are shown in Tables 1 and 2.

Table 1

Experiment	1	2	3	4
Titre for original portion $/ \mathrm{cm}^{3}$	17.50	17.45	17.75	17.55

Table 2

Experiment	1	2	3	4
Titre after reaction with zinc $/ \mathrm{cm}^{3}$	23.70	23.65	23.75	23.70

Analysis

1. Write an equation for the reaction between iron(II) ions and dichromate(VI) ions in the presence of dilute sulphuric acid.
\qquad
\qquad
\qquad
2. Identify all the concordant results in Table $\mathbf{1}$ and use these to determine a mean titre for the original solution.
\qquad
\qquad
3. Use your answer from part 2 above to calculate the number of moles of iron(II) ions in $25.0 \mathrm{~cm}^{3}$ of the original solution.
\qquad
\qquad
4. (a) Identify all the concordant results in Table 2 and use these to determine a mean titre for the solution after reaction with zinc.
\qquad
\qquad
(b) Calculate the total number of moles of iron(II) and iron(III) ions present in $25.0 \mathrm{~cm}^{3}$ of the original solution.
\qquad
\qquad
\qquad
5. Use your answers from part 3 and part 4(b) to calculate the percentage of iron present as iron(II) ions in the original solution.
\qquad
\qquad
6. Assume that the maximum errors for the apparatus used in this experiment were

Calculate the maximum percentage error in using each piece of apparatus, and hence the maximum overall apparatus error. Use the mean titre for the original mixture to calculate the error in using the burette.
\qquad
\qquad
\qquad
\qquad

$$
\begin{array}{ll}
\text { pipette } & \pm 0.05 \mathrm{~cm}^{3} \\
\text { burette total error } & \pm 0.15 \mathrm{~cm}^{3} \quad \text { (from two readings and an end-point error) }
\end{array}
$$

Evaluation

1. Comment on the consistency of the titration results given in Tables $\mathbf{1}$ and $\mathbf{2}$.
\qquad
\qquad
\qquad
\qquad
2. According to the supplier, the original solution contained iron(II) ions as 78.0% of the total iron present. Calculate the difference between the value calculated in part 5 of the Analysis section and the supplier's value. Express this difference as a percentage of the supplier's value. (If you could not complete the calculation in part 5 of the Analysis section, you should assume a value of 82.2%. This is not the correct value).

Difference \qquad
Percentage \qquad
3. Explain why it is necessary to filter off unreacted zinc.
\qquad
\qquad
\qquad
\qquad
4. Explain how errors could result from filtration process.
\qquad
\qquad
\qquad
\qquad

```
Exercise 3 The preparation of (4-methylphenyl)phenylmethanone.
Skill assessed: Planning (8 marks)
```

Write your answer to this exercise in the space provided on pages 10 to 14 of this booklet.

Introduction

(4-Methylphenyl)phenylmethanone is a pale yellow solid which can be prepared from methylbenzene and benzenecarbonyl chloride by a Friedel-Crafts reaction. Aluminium chloride is used as a catalyst.

$$
\begin{array}{cccc}
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3} \\
\text { methylbenzene } & \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl} & \text { benzenecarbonyl } & \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COC}_{6} \mathrm{H}_{4} \mathrm{CH}_{3} \\
\text { (} \left.M_{\mathrm{r}}=92.0\right) & \text { (4-methyloride }\left(M_{\mathrm{r}}=140.5\right) & \left(M_{\mathrm{r}}=196.0\right) & \mathrm{AlCl}_{3} \\
\text { chene }
\end{array}
$$

This reaction is an example of acylation; the other product of the reaction is hydrogen chloride. Equimolar amounts of benzenecarbonyl chloride and aluminium chloride are used together with a large excess of methylbenzene.

A typical yield, based on benzenecarbonyl chloride, is 65%.
The crude solid product can be purified by recrystallisation from methylbenzene.
Methylbenzene is a toxic flammable liquid.

Questions

1. (a) Write an equation for the reaction taking place.
(b) Calculate the theoretical mass of benzenecarbonyl chloride needed to form 5 g of (4-methylphenyl)phenylmethanone.
(c) Calculate the mass of benzenecarbonyl chloride needed to form 5 g of (4-methylphenyl)phenylmethanone, bearing in mind that you will only obtain 65% of the theoretical yield of the product.
(d) Calculate the mass of aluminium chloride needed in the reaction.
2. Give a full description of the procedure for purifying the crude product by recrystallisation, including details of the apparatus you would use.
You are not required to describe the preparation of the crude product.
3. For the recrystallisation, give details of potential hazards and relevant safety precautions.

CONFIDENTIAL

1 The practical examination will be held on Wednesday 21 May 2003, 9.00 am to 11.00 am .
Centres are permitted to run more than one session for the Practical Examination provided that the following conditions are met:

- all candidates to be examined must be present in the centre by 9.30 am at the latest;
- all candidates who are waiting to be examined must be supervised until their session begins;
- candidates who are released at the end of their session must have no contact with any candidate yet to be examined.

2 The strictest possible precautions are to be taken to prevent these exercises becoming known to the candidates in advance, either directly or indirectly. AQA emphasises the need to preserve the absolute fairness and integrity of this examination. This copy of Instructions to Supervisors is to be kept at the centre under secure conditions when not in use; it is not to be removed from the centre.

3 A combined question paper/answer book will be supplied. If an answer book is badly damaged, e.g. by spillage, a candidate may be given a fresh book, but both books must be sent to the Examiner, together with a statement of the reasons for issuing a duplicate answer book. The damaged book must be sealed in a polythene bag.

The Periodic Table/Data Sheet will be provided as a perforated sheet on pages 3 and 4 of the question paper/answer book. Candidates will be instructed to detach this sheet at the start of the examination.

4 The use of books and laboratory notebooks is not permitted.

5 The attention of candidates must be drawn to the requirement that all rough work must be done in the answer book. Extra paper is not to be supplied for this purpose. Candidates' attention should also particularly be drawn to the instructions contained in the question paper.

6 As far as possible, apparatus and special materials should not be put away until the end of the examination period; an Inspector who arrives late will thus be able to see the preparations that have been made.

7 If a candidate fails with the material allotted to him/her and asks to be allowed a second opportunity, he/she may be allowed it at the discretion of the Supervisor. Under no circumstances may materials from other sources be used. Supervisors should bear this in mind as well as the availability of apparatus and the amount of time remaining when exercising this discretion. No extra time is to be allowed to such a candidate and he/she must hand in his/her script at the same time as other candidates at the centre. A full report, in writing, of any such incident must be sent to the Examiner together with the scripts. Supervisors must not allow extra time to candidates unless specific permission is given by AQA. Any circumstance which leads to a shortage of time should be reported to the Examiner.

8 A Supervisor must not give any advice to candidates about the way they are conducting experiments unless it is to prevent personal injury to the candidates or damage to apparatus. If any such incident occurs, the Supervisor should report details, in writing, to the Examiner when scripts are sent. Unless specific mention to the contrary is made in the instructions, Supervisors must not give any advice or information to candidates, whether it is asked for or not.

APPARATUS AND MATERIALS

Exercise 1

This exercise involves the reaction of a solution of potassium iodate (V) with potassium iodide, and the titration of the liberated iodine with standard sodium thiosulphate solution.

Materials

Each candidate will require two volumetric solutions:
1 (a) A standard sodium thiosulphate solution of concentration between 0.090 and $0.110 \mathrm{~mol} \mathrm{dm}^{-3}$.
This solution may be made up in the centre or purchased from a reputable manufacturer at the discretion of the centre. Wherever possible, the centre should prepare one bulk batch only of this solution. It is essential that the concentration of this solution should be in the range specified. It must be stressed that the accuracy of this solution is the responsibility of the centre alone.

Each candidate will require $200 \mathrm{~cm}^{3}$ of this solution, in a closed container labelled sodium thiosulphate.
(b) A solution of potassium iodate(\mathbf{V}), of concentration between 0.0150 and $0.0170 \mathrm{~mol} \mathrm{dm}^{-3}$.

This solution may be made up in the centre. Wherever possible, the centre should prepare one bulk batch only of this solution. It is essential that the concentration of this solution should be within the range specified. It must be stressed that the accuracy of this solution is the responsibility of the centre alone.

Each candidate will require $150 \mathrm{~cm}^{3}$ of this solution, in a closed container labelled potassium iodate(V).

2 Each candidate will require $100 \mathrm{~cm}^{3}$ of sulphuric acid, of concentration between $0.9 \mathrm{~mol} \mathrm{dm}^{-3}$ and $1.1 \mathrm{~mol} \mathrm{dm}^{-3}$. This solution may be made up in the centre. Wherever possible, the centre should prepare one bulk batch only of this solution. It is essential that the concentration of this solution should be within the range specified. It must be stressed that the accuracy of this solution is the responsibility of the centre alone.

3 Each candidate will require five separate samples of potassium iodide. Each sample must be labelled potassium iodide and weigh at least 0.50 g .

4 Each candidate will require access to a solution of starch as indicator. It is not essential to provide individual supplies of the indicator.

5 Reagents of good analytical quality should be used in preparing the solutions, and they should be carefully stored in bottles fitted with air-tight stoppers. Great care must be taken in the storage and dispensing of each solution to ensure that its concentration is unaltered. Wherever possible, centres are advised to check that the reagents used do work.

6 Supervisors are required in every instance to carry out the volumetric exercise and to report the results to the Examiner on the form provided on page 5 of this booklet. A Supervisor result is required for each group of candidates. The Supervisor results must be entered with the list of candidates supervised in the group on the form provided. The accuracy of the candidates' results will be assessed against the Supervisor's results for the titration. Supervisors must not carry out the exercise in the presence of the candidates.

Supervisors are also required to keep a sample (not less than $100 \mathrm{~cm}^{3}$) of each volumetric solution used in a small stoppered bottle. These samples should be kept for a period of four weeks after the examination and should be available to the Examiners if called for.

It is essential that orders for solutions which are not to be made up in the centre should be placed without delay.

Spare supplies of all solutions specified in these instructions must be available.

7 Supervisors are required to assess the manipulative skills of candidates and to complete the grid on page 5 of this booklet. This form must be sent to the Examiner with the scripts.

If a centre needs to conduct the examination in two or more separate sessions, the form on page 5 must be completed and sent to the Examiner with each group of scripts. This form may be photocopied if centres have large numbers of candidates.

Apparatus

The apparatus specified below represents the minimum requirement. Candidates will be advised to carry out Exercise 1 first.

Each candidate will require:
one $50 \mathrm{~cm}^{3}$ burette and stand
one funnel
one $25 \mathrm{~cm}^{3}$ pipette
one pipette filler
one measuring cylinder ($10 \mathrm{~cm}^{3}$ or $25 \mathrm{~cm}^{3}$ or $50 \mathrm{~cm}^{3}$)
two or more $250 \mathrm{~cm}^{3}$ conical flasks
one dropping pipette or one measuring cylinder $\left(5 \mathrm{~cm}^{3}\right.$ or $\left.10 \mathrm{~cm}^{3}\right)$ for adding starch solution one wash bottle
a plentiful supply of purified water (either distilled or de-ionised).

Centre Number \qquad
Supervisor \qquad Date \qquad
Supervisor's average titre \qquad cm^{3}

	1	2	3	4	5		6	7	8		9	
Name of Candidate					-							O

Notes for the assessment of Manipulative Skills listed 1-9 above.

1-3 The Supervisor should observe the candidate in the use of the pipette at an appropriate time during the titration. The candidate scores the mark if the correct technique is used once.

4 The mixture in the flask at the beginning of the titration should be red-brown.
5-8 The Supervisor should observe the candidate in the use of the burette at an appropriate time during the titration. The candidate scores the mark if the correct technique is used once.

9 The candidate loses this mark if an extra supply of sodium thiosulphate, potassium iodide or potassium iodate (V) is needed.

This sheet may be photocopied

[^0]: * 58-71 Lanthanides
 † 90-103 Actinides

