GCE 2004 June Series

ASSESSMENT and
OUALIFICATIONS
ALLIANCE

Mark Scheme

Chemistry (Subject Code CHM5)

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from:
Publications Department, Aldon House, 39, Heald Grove, Rusholme, Manchester, M14 4NA Tel: 01619531170
or
download from the AQA website: www.aqa.org.uk
Copyright © 2004 AQA and its licensors

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX.

CHM5 Thermodynamics and Further Inorganic Chemistry

SECTION A

Question 1

(a) (i) ΔH atomisation/sublimation of magnesium
(ii) Bond/dissociation enthalpy of $\mathrm{Cl}-\mathrm{Cl}$

OR $2 \times H$ atomisation of chlorine 1
(iii) Second ionisation enthalpy of magnesium 1
(iv) $2 \times$ electron affinity of chlorine 1
(v) Lattice formation enthalpy of $\mathrm{MgCl}_{2} \quad 1$
(b) Equation $2 \mathrm{MgCl}(\mathrm{s}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{~s})+\mathrm{Mg}(\mathrm{s}) \quad 1$

State symbols not required but penalise if incorrect

Calculation ΔH reaction $=\Sigma \Delta H_{\mathrm{f}}$ products $-\Sigma \Delta H_{\mathrm{f}}$ reactants 1
$=-653-(2 \times-133) \quad 1$
$=-427\left(\mathrm{kJmol}^{-1}\right) \quad 1$
Allow +427 to score (1) mark
Other answers; award (1) for a correct ΔH reaction expression
(c) ΔH soln $\mathrm{MgCl}_{2}=-\Delta H$ Lat.form. $+\Delta H$ hyd. $\mathrm{Mg}^{2+}+2 \Delta H$ hyd. $\mathrm{Cl}^{-} \quad 1$
or cycle
$=2502-1920-(2 \times 364)$
1
$=-146\left(\mathrm{kJmol}^{-1}\right)$
Allow + 146 to score (1) mark
Other answers; award (1) for a correct ΔH soln MgCl_{2} expression/cycle

Question 2

Each section to be marked independently
(a) (i) Ionic 1
(ii) Sodium $/ \mathrm{Na} 1$
(iii) $\begin{aligned} & \mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH} \\ & \\ & \text { Ignore state symbols }\end{aligned}$
(b) (i) Covalent 1
(ii) Phosphorus/P 1
(iii) $\mathrm{H}_{3} \mathrm{PO}_{4}$ or other acid with P in oxidation state (V) or (III) 1
(c) (i) Macromolecular/giant covalent/giant molecular 1
(ii) $\mathrm{Silicon} / \mathrm{Si} \quad 1$
(iii) e.g. $\mathrm{CaO}+\mathrm{SiO}_{2} \rightarrow \mathrm{CaSiO}_{3} \quad$ Base $\quad 1$

Balanced 1

Question 3

(a) (i) Orange 1
(ii) Red-violet/ruby/violet/ green 1
(iii) Purple 1
(b) Fe^{2+} or $\mathrm{Fe}(\mathrm{II})$ 1
(c) (i) 6 or (VI) 1
(ii) 3 or (III) 1
(d) (i) $\mathrm{MnO}_{4}^{-} / \mathrm{Mn}^{2+}$ has a more positive E^{θ} value than $\mathrm{Cl}_{2} / \mathrm{Cl}^{-}$ or data used
and will oxidise Cl^{-}or change Cl^{-}to Cl_{2} 1Allow converse answers
(ii) $\mathrm{NO}_{3}^{-} / \mathrm{HNO}_{2}$ has a more positive E^{θ} value then $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ 1 or data used
and will oxidise Fe^{2+} or change Fe^{2+} to Fe^{3+} 1
(e) (i) 0.5 1
(ii) $2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{~S}_{2} \mathrm{O}_{8}^{2-} \rightarrow 10 \mathrm{SO}_{4}^{2-}+2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+}$
Both SO_{4}^{2-} and MnO_{4}^{-}on right1
Balanced 1

Question 4

(a) (i) An atom, ion or molecule which can donate a lone electron pair 1
(ii) A central metal ion/species surrounded by co-ordinately bonded 1
ligands
or ion in which co-ordination number exceeds oxidation state
(iii) The number of co-ordinate bonds formed to a central metal ion 1 or number of electron pairs donated or donor atoms
(b) Allow the reverse of each substitution
(i) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+6 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}+6 \mathrm{H}_{2} \mathrm{O}$Complex ions1
Balanced 1
Allow partial substitution
(ii) $\quad\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{Cl}^{-} \rightarrow \mathrm{CoCl}_{4}^{2-}+6 \mathrm{H}_{2} \mathrm{O}$Complex ions1
Balanced 1or $\mathrm{H}_{2} \mathrm{O}$ or NH_{3} or $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ by Cl^{-}
e.g. (iii) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+3 \mathrm{C}_{2} \mathrm{O}_{4}^{2-} \rightarrow\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{4-}+6 \mathrm{H}_{2} \mathrm{O}$
Complex ions 1
Balanced 1
Allow all substitution except
(i) NH_{3} by $\mathrm{H}_{2} \mathrm{O}$
(ii) more than $2 \mathrm{Cl}^{-}$substituted for NH_{3} or $\mathrm{H}_{2} \mathrm{O}$
e.g. (iv) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+$ EDTA $^{4-} \rightarrow[\mathrm{Co}(\text { EDTA })]^{2-}+6 \mathrm{H}_{2} \mathrm{O}$
Complex ions 1
Balanced 1or $\mathrm{H}_{2} \mathrm{O}$ or NH_{3} by $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ and NH_{3} or Cl^{-}by EDTA ${ }^{4-}$
(c) (i) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ 1
(ii) $\mathrm{Fe}(\mathrm{OH})_{2}$ or $\mathrm{Fe}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right) x$ where $x=0$ to 4 1
(iii) Fe^{2+} is oxidised to Fe^{3+} or $\mathrm{Fe}(\mathrm{OH})_{3}$ 1
By oxygen in the air 1

Question 5

(a) A catalyst in the same phase/phase as the reactants 1
(b) (i) A reaction in which a product acts as a catalyst 1
(ii) $\begin{array}{ll}\mathrm{Mn}^{2+} \text { or } \mathrm{Mn}^{3+} & 1 \\ & \text { "Self-catalysing" } \text { not allowed }\end{array}$
(c) (i) $2 \mathrm{CO}+2 \mathrm{NO} \rightarrow 2 \mathrm{CO}_{2}+\mathrm{N}_{2} \quad 1$ or $\quad 4 \mathrm{CO}+2 \mathrm{NO}_{2} \rightarrow 4 \mathrm{CO}_{2}+\mathrm{N}_{2}$
C not allowed as a product
Reducing agent CO 1
(ii) Pt, Pd or Rh 1

Deposited on a ceramic honeycomb or matrix or mesh or sponge1

To increase surface area of catalyst 1
(d) (i) Reactants cannot move on surface or products not desorbed or 1 Active sites blocked
$\begin{array}{lll}\text { (ii) } & \text { Reactants not brought together or } & 1 \\ \text { No increase in reactant concentration on catalyst surface or } & \\ \text { Reactants not held long enough for a reaction to occur or } \\ \text { Reactant bonds not weakened }\end{array}$
Total 10

Question 6

(a) FeCl_{3} is a Lewis acid 1

Accepts electron pairs (from water) 1
$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is a Bronsted-Lowry acid 1
Donated protons 1
NB mark separately
(b) (i) $\left.\quad K_{\mathrm{a}}=\left[\left\{\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})\right\}^{2+}\right]\left[\mathrm{H}^{+}\right] /\left[\left\{\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)\right)_{6}\right\}^{3+}\right] \quad N B[] \quad 1$
essential
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$or $\left[\mathrm{H}^{+}\right]=3.02 \times 10^{-2} \quad 1$
Hence $\left[\mathrm{H}^{+}\right]=\left[\left\{\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})\right\}^{2+}\right] \quad 1$
$\left.K_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]^{2} /\left[\left\{\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}^{3+}\right] \quad\left(=3.02 \times 10^{-2}\right)^{2} / 0.15\right) \quad 1$
$K_{\mathrm{a}}=6.08 \times 10^{-3} \quad\left(\right.$ Allow 6.0 to $\left.6.1 \times 10^{-3}\right) \quad 1$
$\mathrm{p} K_{\mathrm{a}}=2.22$ (3 significant figures needed but ignore units) 1
NB allow value of $p K_{a}$ consequentially to value of K_{a}
allow $p K_{a}=-\log K_{a}(1)$ if stated but no value of $p K_{a}$ calculated
(ii) Mark consequentially to the value of K_{a} obtained in (b)(i)

New $\left[\left\{\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}^{3+}\right]=0.250 / 4 \quad(=0.0625)$
$K_{\mathrm{a}}=6.08 \times 10^{-3}=\left[\mathrm{H}^{+}\right]^{2} / 0.0625$
$\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(6.08 \times 10^{-3} \times 0.0625\right)\left(=\sqrt{ } 3.80 \times 10^{-4}\right)$
$\mathrm{pH}=-\log 0.01949=1.71$
NB (i) Using the given value of $K_{a}=4.50 \times 10^{-3}$ and 0.0625
$\left[\mathrm{H}^{+}\right]=0.0168$ and $\mathrm{pH}=1.78$ (Scores the full 3 marks)
(ii) Penalise two marks if $\left[\left\{\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}^{3+}\right]=0.250 / n$ where $n \neq 4$

Allow $\left[H^{+}\right]=\sqrt{\left(6.08 \times 10^{-3} \times 0.250 / n\right)}$
(iii) Using $K_{a}=4.50 \times 10^{-3}$ and 0.0833
$p H=1.71$ BEWARE of this answer it scores only 1 mark
(c) Fe^{2+} ion has a smaller charge to size ratio or charge density

Less polarising than Fe^{3+} / less weakening effect on $\mathrm{O}-\mathrm{H}$ bonds or
Hydrolysis equilibrium displace more to the left

SECTION B

Question 7

(a)

NB The bonds shown in the structure must be to correct

Isomerism: Geometric or cis-trans	1
If written answer is correct, ignore incorrect labelling of	
structures.	
If no written answer, allow correctly labelled structures.	

Both COOH groups must be on the same side/ close together/ cis .
No rotation about $\mathrm{C}=\mathrm{C}$ axis 1Structure

${ }^{\text {H }}$	O
	$\mathrm{C}-\mathrm{C}$
/	
H	O

Allow
HC C O
HC C O
(b) $\mathrm{Br}_{2} / \mathrm{HBr} / \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}^{+} / \mathrm{Br}^{+} / \mathrm{NO}_{2}{ }^{+}($Mark M1)

NB If electrophile $\mathrm{H}^{+} / \mathrm{Br}^{+} / \mathrm{NO}_{2}{ }^{+}$allow M1, M2 and M4 If the acid is incorrect, M2 and M3 can still be scored Allow M4 consequentially if a repeat error from part (a)
(c) e.g. $2 \mathrm{NaOH}+\mathrm{HO}_{2} \mathrm{CCHCHCO}_{2} \mathrm{H} \rightarrow \mathrm{NaO}_{2} \mathrm{CCHCHCO}_{2} \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O}$

Both H replaced 1
Balanced for atoms and charges 1

NB Allow ionic equations and $2 \mathrm{NaOH}+\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4} \rightarrow \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}_{4} \mathrm{Na}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
Allow one if structure incorrect but molecular formula correct Allow one for a correct equation showing one H replaced
(d) M1 Two peaks 1

M2 No splitting or singlets 1
M3 (Two) non-equivalent protons or two proton environments 1
M4 No adjacent protons 1
M5 Same area under the two peaks or same relative intensity 1
NB Doublet could score M1 and M3 or M5 (Max 2)
More than two peaks $C E=0$
Apply the "list principle" to incorrect answers if more than 3 given

Total 15

Question 8

(a) M1 $\quad \mathrm{K}_{\mathrm{p}}=(\mathrm{pY})^{3} \cdot\left(\mathrm{p}^{2}\right)^{2} /\left({ }_{\mathrm{p} W}\right)^{2} \cdot\left(\mathrm{pX}^{\mathrm{P}}\right) \quad$ NB [] wrong 1

M2 temperature 1
M3 increase 1
M4 particles have more energy or greater velocity/speed 1
M5 more collisions with $\mathrm{E}>\mathrm{Ea}$ or 1
more successful collisions
M6 reaction exothermic or converse 1
$M 7$ equilibrium moves in the left 1
Marks for other answers
Increase in pressure or concentration
Addition of a catalyst;
allow M1, M5, M6 Max 3
Decrease in temperature;
Two or more changes made;
allow M1, M6 Max 2
(b) (i) Advantage; reaction goes to completion, not reversible or faster

Disadvantage; reaction vigorous/dangerous (exothermic must be
qualified)
or $\mathrm{HCl}(\mathrm{g})$ evolved/toxic or $\mathrm{CH}_{3} \mathrm{COCl}$ expensive
NB Allow converse answers
Do not allow reactions with other reagents e.g. water or ease of separation
(ii) $\Delta S=\Sigma \mathrm{S}$ products $-\Sigma \mathrm{S}$ reactants
$\Delta S=(259+187)-(201+161)$
$\Delta S=84\left(\mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right) \quad$ (Ignore units) $\quad 1$
Allow - 84 to score (1) mark

$$
\begin{equation*}
\Delta G=\Delta H-T \Delta S \tag{1}
\end{equation*}
$$

$$
=-21.6-298 \times 84 / 1000 \quad 1
$$

$=-46.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$ or $-46600 \mathrm{~J} \mathrm{~mol}^{-1}$ 1

Allow (2) for -46.6 without units
(Mark ΔG consequentially to incorrect ΔS)
(e.g. $\Delta S=-84$ gives $\Delta G=+3.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$)

Question 9

(a) $\mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2} \quad 1$
$\mathrm{MgO}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2} \mathrm{O} \quad 1$
Allow ionic equations
(b) Hydrogen collection

Using a gas syringe or measuring cylinder/ graduated vessel over water 1
Allow if shown in a diagram
Measurements (i) P
(ii) $\mathrm{T} \quad 1$
(iii) $\mathrm{V} \quad 1$

Use ideal gas equation to calculate mol hydrogen or mass $/ \mathrm{Mr} \quad 1$
$\mathrm{Mol} \mathrm{H} \mathrm{H}_{2}=\mathrm{mol} \mathrm{Mg}$ (Mark consequentially to equation) 1
(c) $\mathrm{MgCl}_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{NaCl} \quad$ Species $\quad 1$

Balanced 1
Allow an ionic equation
$\mathrm{Mg}(\mathrm{OH})_{2} \rightarrow \mathrm{MgO}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 1$

(d) Allow 2 significant figures in these calculations and ignore additional figures.

EITHER

Mol MgO obtained stage $2=$ mass $\mathrm{MgO} / \mathrm{MrMgO} \quad 1$
$=6.41 / 40 .(3) \quad=0.159$ Allow $0.16 \quad 1$
Allow method mark if formula of magnesium oxide or M_{r} incorrect.
Moles of $\mathrm{Mg}=$ moles of H_{2} hence
Mol original $\mathrm{MgO}=\mathrm{mol} \mathrm{MgO}$ from stage $2-\mathrm{mol} \mathrm{H}_{2} \quad 1$
$=0.159-0.0528=0.106$ Allow 0.11

Mark consequentially to moles of magnesium oxide determined above
OR
Mass MgO formed from $\mathrm{Mg}=0.0528 \times M_{\mathrm{r}} \mathrm{MgO}\{$ or $40 .(3)\}$

$$
\begin{equation*}
=2.13 \mathrm{~g} \quad \text { Allow } 2.1 \tag{1}
\end{equation*}
$$

Allow method mark if formula of magnesium oxide or Mr incorrect.
Mass original $\mathrm{MgO}=$ total mass MgO - mass formed from Mg $=6.41-2.13=4.28 \mathrm{~g} \quad$ Allow 4.3
Mark consequentially mass of magnesium oxide determined above
NB
As there is an error in part (d), the mass of sample should have been 6.25 NOT 2.65, award full marks to any candidate who has crossed out their correct first answer.

