GCE 2004 June Series

Mark Scheme

Chemistry (Subject Code CHM5)

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from:

Publications Department, Aldon House, 39, Heald Grove, Rusholme, Manchester, M14 4NA Tel: 0161 953 1170

or

download from the AQA website: www.aqa.org.uk

Copyright © 2004 AQA and its licensors

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX. Dr Michael Cresswell Director General

www.theallpapers.com

CHM5 Thermodynamics and Further Inorganic Chemistry

SECTION A

Question 1

1 1 1 1 1
1 1 1 1 1
1 1 1
1 1 1
1 1
1
1 1 1
1
1 1 :le

Each section to be marked independently

(a)	(i)	Ionic		1
	(ii)	Sodium/Na		1
	(iii)	$Na_2O + H_2O \rightarrow 2NaOH$ Ignore state symbols		1
(b)	(i)	Covalent		1
	(ii)	Phosphorus/P		1
	(iii)	H_3PO_4 or other acid with P in oxidation state (V) o	r (III)	1
(c)	(i)	Macromolecular/giant covalent/giant molecular		1
	(ii)	Silicon/Si		1
	(iii)	e.g. $CaO + SiO_2 \rightarrow CaSiO_3$	Base Balanced	1 1

(a)	(i)	Orange	1
	(ii)	Red-violet/ruby/violet/ green	1
	(iii)	Purple	1
(b)	Fe^{2+}	or Fe(II)	1
(c)	(i)	6 or (VI)	1
	(ii)	3 or (III)	1
(d)	(i)	MnO_4^- / Mn^{2+} has a more positive E° value than Cl_2 / Cl^- or data used	1
		and will oxidise Cl^- or change Cl^- to Cl_2 Allow converse answers	1
	(ii)	NO_3^- / HNO ₂ has a more positive E° value then Fe ³⁺ / Fe ²⁺ or data used	1
		and will oxidise Fe^{2+} or change Fe^{2+} to Fe^{3+}	1
(e)	(i)	0.5	1
	(ii)	$2Mn^{2+} + 8H_2O + 5S_2O_8^{2-} \rightarrow 10SO_4^{2-} + 2MnO_4^{-} + 16H^+$ Both SO_4^{2-} and MnO_4^{-} on right Balanced	1 1
			Total 13

(a)	(i)	An atom, ion or molecule which can donate a lone electron pair	1
	(ii)	A central metal ion/species surrounded by co-ordinately bonded ligands or ion in which co-ordination number exceeds oxidation state	1
	(iii)	The number of co-ordinate bonds formed to a central metal ion or number of electron pairs donated or donor atoms	1
(b)	(i)	Allow the reverse of each substitution $[Co(H_2O)_6]^{2+} + 6NH_3 \rightarrow [Co(NH_3)_6]^{2+} + 6H_2O$ Complex ions Balanced Allow partial substitution	1 1
	(ii)	$[Co(H_2O)_6]^{2+} + 4Cl^- \rightarrow CoCl_4^{2-} + 6H_2O$ Complex ions Balanced or H ₂ O or NH ₃ or C ₂ O ₄ ²⁻ by Cl	1 1
e.g.	(iii)	$[Co(H_2O)_6]^{2+} + 3C_2O_4^{2-} \rightarrow [Co(C_2O_4)_3]^{4-} + 6H_2O$ Complex ions Balanced Allow all substitution except (i) NHL by H.O	1 1
		(i) NH_3 by H_2O (ii) more than 2Cl substituted for NH_3 or H_2O	
e.g.	(iv)	$[Co(H_2O)_6]^{2+} + EDTA^{4-} \rightarrow [Co(EDTA)]^{2-} + 6H_2O$ Complex ions Balanced $or H_2O \text{ or } NH_3 \text{ by } C_2O_4^{2-} \text{ and } NH_3 \text{ or } Cl^- \text{ by } EDTA^{4-}$	1 1
(c)	(i) (ii) (iii)	$[Fe(H_2O)_6]^{2+}$ Fe(OH) ₂ or Fe(OH) ₂ (H ₂ O)x where $x = 0$ to 4 Fe ²⁺ is oxidised to Fe ³⁺ or Fe(OH) ₃ By oxygen in the air	1 1 1 1

(a)	A cat	talyst in the same phase/phase as the reactants	1
(b)	(i)	A reaction in which a product acts as a catalyst	1
	(ii)	Mn ²⁺ or Mn ³⁺ <i>"Self-catalysing" not allowed</i>	1
(c)	(i)	$2CO + 2NO \rightarrow 2CO_2 + N_2$ or $4CO + 2NO_2 \rightarrow 4CO_2 + N_2$ C not allowed as a product	1
		Reducing agent CO	1
	(ii)	Pt, Pd or Rh	1
		Deposited on a ceramic honeycomb or matrix or mesh or sponge	1
		To increase surface area of catalyst	1
(d)	(i)	Reactants cannot move on surface or products not desorbed or Active sites blocked	1
	(ii)	Reactants not brought together or No increase in reactant concentration on catalyst surface or Reactants not held long enough for a reaction to occur or Reactant bonds not weakened	1

(a)	FeCl ₃	3 is a Lewis acid	1
	Acce	pts electron pairs (from water)	1
	[Fe(H	$[I_2O_6]^{3+}$ is a Bronsted-Lowry acid	1
	Dona <i>NB</i>	ted protons mark separately	1
(b)	(i)	$K_{a} = [\{ Fe(H_{2}O)_{5}(OH) \}^{2+}][H^{+}] / [\{ Fe(H_{2}O)_{6} \}^{3+}] \qquad NB []$ essential pH = -log[H ⁺] or [H ⁺] = 3.02 × 10 ⁻²	1
		Hence $[H^+] = [{Fe(H_2O)_5(OH)}^{2+}]$	1
		$K_{\rm a} = [{\rm H}^+]^2 / [{\rm Fe}({\rm H}_2{\rm O})]^{3+}]$ (= 3.02 × 10 ⁻²) ² / 0.15)	1
		$K_{\rm a} = 6.08 \times 10^{-3}$ (Allow 6.0 to 6.1 × 10 ⁻³)	1
		$pK_a = 2.22$ (3 significant figures needed but ignore units) NB allow value of pK_a consequentially to value of K_a allow $pK_a = -\log K_a$ (1) if stated but no value of pK_a calculated	1
	(ii)	Mark consequentially to the value of K_a obtained in (b)(i) New [{Fe(H ₂ O)} ³⁺] = 0.250/4 (= 0.0625) $K_a = 6.08 \times 10^{-3} = [H^+]^2 / 0.0625$ [H ⁺] = $\sqrt{(6.08 \times 10^{-3} \times 0.0625)} (= \sqrt{3.80 \times 10^{-4}})$	1
		$pH = -\log 0.01949 = 1.71$	1
NB	(i)	Using the given value of $K_a = 4.50 \times 10^{-3}$ and 0.0625 $[H^+] = 0.0168$ and $pH = 1.78$ (Scores the full 3 marks)	
	(ii)	Penalise two marks if $[{Fe(H_2O)}^{3+}] = 0.250/n$ where $n \neq 4$ Allow $[H^+] = \sqrt{(6.08 \times 10^{-3} \times 0.250/n)}$ (1)	
	(iii)	Using $K_a = 4.50 \times 10^{-3}$ and 0.0833 pH = 1.71 BEWARE of this answer it scores only 1 mark	
(c)	Fe ²⁺ i	ion has a smaller charge to size ratio or charge density polarizing then E_{0}^{3+} (loss weakening effect on Ω . If hends or	1
	Hydro	olysis equilibrium displace more to the left	1
			Total 15

1

1

SECTION B

Question 7

(a)

HOOC COOH

$$C = C$$

 H H
HOOC H
 $C = C$
 $/$ C
H COOH

NB The bonds shown in the structure must be to correct

Isomerism:	Geometric or cis-trans	1
If written ans	wer is correct, ignore incorrect labelling of	
structures.		
If no written a	unswer, allow correctly labelled structures.	
D 4 COOL		1
Both COOH	groups must be on the same side/ close together/ cis.	I

No rotation about C=C axis

Structure

1

1

Allow

www.theallpapers.com

1

1

(b) $Br_2 / HBr / H_2SO_4 / H^+ / Br^+ / NO_2^+ (Mark M1)$

NB If electrophile $H^+/Br^+/NO_2^+$ allow *M1*, *M2 and M4 If the acid is incorrect, M2 and M3 can still be scored Allow M4 consequentially if a repeat error from part (a)*

(c) e.g. $2NaOH + HO_2CCHCHCO_2H \rightarrow NaO_2CCHCHCO_2Na + 2H_2O$

Both H replaced Balanced for atoms and charges

NB Allow ionic equations and $2NaOH + C_4H_4O_4 \rightarrow C_4H_2O_4Na_2 + 2H_2O$ Allow one if structure incorrect but molecular formula correct Allow one for a correct equation showing one H replaced

(d)	Ml	Two peaks	1
	<i>M2</i>	No splitting or singlets	1
	М3	(Two) non-equivalent protons or two proton environments	1
	M4	No adjacent protons	1
	М5	Same area under the two peaks or same relative intensity	1
			Max 3
	NB	Doublet could score M1 and M3 or M5 (Max 2)	

More than two peaks CE = 0

Apply the "list principle" to incorrect answers if more than 3 given

(a)	M1 M2 M3 M4 M5 M6 M7	$K_p = (_PY)^3 . (_PZ)^2 / (_PW)^2 . (_PX)$ NB [temperature increase particles have more energy or greater more collisions with $E > Ea$ or more successful collisions reaction exothermic or converse equilibrium moves in the left] wrong velocity/speed	1 1 1 1 1 1 1	
	Mark Incre Addit Decre Two o	s for other answers ase in pressure or concentration tion of a catalyst; ease in temperature; or more changes made;	allow M1, M5, M6 allow M1, M5, M6 allow M1, M2, M6 allow M1, M6	Max 3 Max 3 Max 3 Max 2	
(b)	(i)	Advantage; reaction goes to comp	letion, not reversible o	or faster 1	
	NB	Disadvantage; reaction vigorous/dat qualified) or HCl(g) evolved/toxic or CH ₃ COCl expensive Allow converse answers Do not allow reactions with other reac separation	ngerous (exothermic m agents e.g. water or ea	ust be 1 se of	
	(ii)	$\Delta S = \Sigma S$ products – ΣS reactants		1	
		$\Delta S = (259 + 187) - (201 + 161)$		1	
		$\Delta S = 84 (\mathrm{JK}^{-1} \mathrm{mol}^{-1}) (Ignore \ un)$	its)	1	
		Allow -84 to score (1) mark			
		$\Delta G = \Delta H - T \Delta S$		1	
		$= -21.6 - 298 \times 84/1000$ = -46.6 kJ mol ⁻¹ or -46 600 J Allow (2) for -46.6 without units (Mark ΔG consequentially to incorrec (e.g. $\Delta S = -84$ gives $\Delta G = +3.4$ kJ	mol^{-1} ect ΔS) mol^{-1})	1 1	

1

Question 9

(a)	$\begin{array}{rl} Mg &+ \ 2HCl \ \rightarrow \ MgCl_2 + H_2 \\ MgO + 2HCl \ \rightarrow \ MgCl_2 \ + \ H_2O \end{array}$			1 1
	Allow ionic equations			
(b)	Hydrogen collection Using a gas syringe or measuring cylin Allow if shown in a diagram	nder/ graduated vesse	el over water	1
	Measurements	(i) P		1
		(ii) T		1
		(iii) V		1
	Use ideal gas equation to calculate model $H_2 = mol Mg$ (Mark consequenti	ol hydrogen or mass/ <i>A</i> ally to equation)	Иr	1 1
(c)	$MgCl_2 + 2NaOH \rightarrow Mg(OH)_2 + 2$	NaCl	Species Balanced	1 1
	Allow an ionic equation			

 $Mg(OH)_2 \rightarrow MgO + H_2O$

(d) Allow 2 significant figures in these calculations and ignore additional figures.

EITHER

Mol MgO obtained stage 2 = mass MgO/MrMgO		1
= $6.41/40.(3)$ = 0.159 Allow 0.16 Allow method mark if formula of magnesium oxide or M_r incorrect.		1
Moles of Mg = moles of H_2 hence		
Mol original MgO = mol MgO from stage 2 - mol H ₂ = $0.159 - 0.0528 = 0.106$ Allow 0.11		1 1
Mark consequentially to moles of magnesium oxide determined above		
OR		
Mass MgO formed from Mg = $0.0528 \times M_r$ MgO {or 40.(3)}	(1)	
= 2.13 g Allow 2.1 Allow method mark if formula of magnesium oxide or Mr incorrect.	(1)	
Mass arising! Man - total mass Man - mass formed from Ma	(1)	

Mass original MgO = total mass MgO - mass formed from Mg (1) = 6.41 - 2.13 = 4.28 g Allow 4.3 (1)

Mark consequentially mass of magnesium oxide determined above

NB

As there is an error in part (d), the mass of sample should have been 6.25 NOT 2.65, award full marks to any candidate who has crossed out their correct first answer.