Surname			Other	Names			
Centre Number				Candida	ate Number		
Candidate Signat	ure						

Leave blank

General Certificate of Education January 2005 Advanced Level Examination

CHEMISTRY CHM4 Unit 4 Further Physical and Organic Chemistry

Friday 21 January 2005 Morning Session

In addition to this paper you will require: a calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen.
- Fill in the boxes at the top of this page.
- Answer **all** questions in **Section A** and **Section B** in the spaces provided. All working must be shown.
- Do all rough work in this book. Cross through any work you do not want marked.
- The Periodic Table/Data Sheet is provided on pages 3 and 4. Detach this perforated sheet at the start of the examination.
- Section B questions are provided on a perforated sheet. Detach this sheet at the start of the examination.

Information

- The maximum mark for this paper is 90.
- Mark allocations are shown in brackets.
- This paper carries 15 per cent of the total marks for Advanced Level.
- You are expected to use a calculator where appropriate.
- The following data may be required. Gas constant $R = 8.31 \,\mathrm{J \, K}^{-1} \,\mathrm{mol}^{-1}$
- Your answers to questions in **Section B** should be written in continuous prose, where appropriate. You will be assessed on your ability to use an appropriate form and style of writing, to organise relevant information clearly and coherently, and to use specialist vocabulary, where appropriate.

Advice

• You are advised to spend about 1 hour on **Section A** and about 30 minutes on **Section B**.

	For Exam	iner's Use	1
Number	Mark	Number	Mark
1			
2			
3			
4			
5			
6			
7			
8			
Total (Column	1)	→	
Total (Column	2)	\rightarrow	
TOTAL			
Examine	r's Initials		

SECTION A

Answer all questions in the spaces provided.

1 The following reaction scheme shows the formation of two amines, ${\bf K}$ and ${\bf L}$, from methylbenzene.

(a) (i) Give the reagents needed to carry out Step 1. Write an equation for the formation from these reagents of the inorganic species which reacts with methylbenzene.

Reagents

Equation

(ii) Name and outline a mechanism for the reaction between this inorganic species and methylbenzene.

Name of mechanism

Mechanism

(7 marks)

(b) Give a suitable reagent or combination of reagents for Step 2.

(1 *mark*)

The Periodic Table of the Elements

The atomic numbers and approximate relative atomic masses shown in the table are for use in the examination unless stated otherwise in an individual question.

	-	=											Ξ	≥	>	>	=	0
ealea	1.0 H Hydrogen 1		_	Key													7 (7	4.0 He Helium 2
YEA	6.9 Li	9.0 Be	_	relative atomic mass	tomic ma		6.9 Li						10.8 B	12.0 C	14.0 Z	16.0 O	ூட	20.2 Ne
14	Lithium 3	Beryllium 4		atomic number	ımber —	3	Lithium 3						Boron 5	Carbon 6	Nitrogen 7	Oxygen 8	norine	Neon 10
10	23.0 Na	24.3 Mg				l							27.0 Al	28.1 Si	31.0 P	32.1 S	ູວ	39.9 Ar
F	_	⊏											Aluminium 13	Silicon 14	Phosphorus 15	Sulphur 16	lorine	Argon 18
AS	39.1 K	40.1 Ca	45.0 Sc	47.9	>	52.0 Ç	54.9 E						69.7 Ga	72.6 Ge	74.9 As	79.0 Se	_ම	83.8 K
DI	Potassium 19	Calcium 20	_	Titanium 22	_	Chromium N 24	Manganese 25	lron 2	Cobalt 27	Nickel 28		Zinc 30	<u>ج</u> ۾	Germanium 32	allium Germanium Arsenic Selenium Br 32 33 34 35 35	Selenium 34	omine	Krypton 36
1D	85.5 Rb	87.6 Sr	8 8.9	91.2 Zr	92.9 Nb	95.9 Mo	98.9 Tc	98.9 101.1 102.9 Tc Ru Rh	102.9 Rh	106.4 Pd		112.4 Cd	114	118.7 Sn	121.8 Sb	127.6 Te	6.6 —	131.3 Xe
CO	Ε	Strontium 38	Yttrium 39	Zirconium 40		Molybdenum 742 4	Fechnetium 2	Ruthenium 4	Rhodium 45	Palladium 16		Cadmium 48	49 n	Tin 50	Antimony 51	Tellurium 52	odine	Xenon 54
K	132.9 Cs	137.3 Ba	138.9 La	178.5 H	180.9 Ta	183.9 W	186.2 Re	190.2 Os	192.2 Ir	195.1		200.6 Ha	204.4 TI		209.0 Bi	210.0 Po		222.0 Rn
LE	Caesium 55	_	Lanthanum 57 *	Hafnium 72	٤	Tungsten 7	Ε	Osmium 7	Iridium 77	Platinum 78	Gold 879	Mercury 80	Thallium 81	Lead 82		Polonium 84	Astatine 85	Radon 86
-	223.0 Fr Francium 87	226.0 Ra Radium 88	227 Actinium 89 †															
์ w.theall _l	* 58 – 7	* 58 – 71 Lanthanides	nides		Ce Serium	140.9 144.2 144.9 150.4 152.0 157.3 158.9 162.5 164.9 Pr Nd Pm Sm Eu Gd Tb Dy Ho Praseodymium Neodymium Promethium Pr	44.2 Nd leodymium F	144.9 1 Pm 2 romethium 8	150.4 Samarium	152.0 Fu Europium	157.3 Gd Gd 3adolinium	158.9 Tb	162.5 Dy Dysprosium	164.9 Ho Holmium	167.3 Er Erbium	168.9 Tm Thulium	73.0 Yb Ytterbium	175.0 Lu Lutetium
	+ 90 – 16	† 90 – 103 Actinides	qes	,	58 232.0 Th Thorium 90	59 6 231.0 2 Pa Protactinium 91	60 6 238.0 2 U Uranium N	61 62 63 64 237.0 239.1 243.1 247.1 Np Pu Am Cm Neptunium Plutonium Americium Curium 93 94 95 96	62 (6 239.1 Pu Plutonium / 94	63 1 243.1 243.1 Am Americium 95 8	247.1 : Cm Curium	65 66 67 68 69 70 71 247.1 252.1 (252) (257) (258) (259) (260) Bk Cf Es Fm Md No Lr Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium 97 98 99 100 101 102 103	252.1 C Californium	67 (252) Es Einsteinium 99	68 (6257) (7257)	(258) (258) (Mandelevium 101	70 77 70 77 No Nobelium 1102	71 (260) Lr Lawrencium 103
m				_														

140.1	140.9	144.2	144.9	150.4	152.0	157.3	9.8	162.5	164.9	167.3	168.9	173.0	175.0
ပီ	Ce Pr Nd Pm	P Z	Pn	Sm	Ш	р О	q H	۵	윈	ш	Ę	Ϋ́	ב
Cerinm	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
28	59 60 61 62 63 64 6t	09	61	62	63	_	10	99		98	69	02	71
232.0 Th	232.0 231.0 238.0 237.0 239.1 243.1 24 Th Pa U Np Pu Am	238.0 U	237.0 Np	239.1 Pu	243.1 Am	7.7 Cm	4 7.1	.52.1 C	(252) Es	(257) Fm	(258) Md	(259) No	(260) Ľ
Thorium	Protactinium Uranium Ne	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendeleviu	Nobelium	Lawrencium
06	91	92	93	94	92		26	86	66	100	101	102	103

Table 1 Proton n.m.r chemical shift data

Type of proton	δ/ppm
RCH_3	0.7–1.2
R_2CH_2	1.2–1.4
R_3 CH	1.4–1.6
RCOCH ₃	2.1–2.6
$ROCH_3$	3.1–3.9
$RCOOCH_3$	3.7–4.1
ROH	0.5–5.0

Table 2 Infra-red absorption data

Bond	Wavenumber/cm ⁻¹
С—Н	2850–3300
С—С	750–1100
C=C	1620–1680
C=O	1680–1750
С—О	1000-1300
O—H (alcohols)	3230–3550
O—H (acids)	2500–3000

imary amine
(7 marks)
(2 marks)
e excess of
(1 mark)
e reacts with

19

(1 mark)

Turn over ▶

2 The amino acid *alanine* is shown below.

- (a) A sample of alanine is dissolved in water.
 - (i) Draw the structure of the main alanine species present in this aqueous solution and give the name of this type of species.

Structure

Type of species

(ii) Draw the structure of the alanine species formed when an excess of hydrochloric acid is added to the solution.

(3 marks)

(b) Alanine molecules may be reacted together to form a polypeptide. Give the repeating unit of this polypeptide and name the type of polymerisation involved in its formation.

Repeating unit

(2 marks)

(c) The repeating unit of a polyalkene is shown below.

Jive the name	e of the alkene	wnich is used to	o form this poly	mer.	
•••••	•••••	•••••		•	(1 mark)

TURN OVER FOR THE NEXT QUESTION

Turn over

Draw one possible structure for each of the species **A** to **J**, using Table 2 on the Data Sheet where appropriate.

(a) Compounds **A** and **B** have the molecular formula C₅H₁₀ **A** decolourises bromine water but **B** does not.

A

B

(2 marks)

(b) Compounds $\bf C$ and $\bf D$ have the molecular formula $C_2H_4O_2$ Each has an absorption in its infra-red spectrum at about $1700\,{\rm cm}^{-1}$ but only $\bf D$ has a broad absorption at $3350\,{\rm cm}^{-1}$

 \mathbf{C}

D

(2 marks)

(c) Compounds ${\bf E}$ and ${\bf F}$ are esters with the molecular formula $C_5H_{10}O_2$ The proton n.m.r. spectrum of ${\bf E}$ consists of two singlets only whereas that of ${\bf F}$ consists of two quartets and two triplets.

 \mathbf{E}

F

(2 marks)

(d)	Compounds G and H have the molecular formula C ₃ H ₆ Cl ₂
	G shows optical activity but H does not.

 \mathbf{G}

H

(2 *marks*)

(e) Compounds \mathbf{I} and \mathbf{J} have the molecular formula C_6H_{12} Each has an absorption in its infra-red spectrum at about $1650\,\mathrm{cm}^{-1}$ and neither shows geometrical isomerism. The proton n.m.r. spectrum of \mathbf{I} consists of a singlet only whereas that of \mathbf{J} consists of a singlet, a triplet and a quartet.

I

J

(2 marks)

 $\frac{10}{10}$

TURN OVER FOR THE NEXT QUESTION

Turn over

4 (a) The following table shows the results of three experiments carried out at the same temperature to investigate the rate of the reaction between compounds \mathbf{P} and \mathbf{Q} .

	Experiment 1	Experiment 2	Experiment 3
Initial concentration of P /mol dm ⁻³	0.50	0.25	0.25
Initial concentration of Q /mol dm ⁻³	0.36	0.36	0.72
Initial rate/mol dm ⁻³ s ⁻¹	7.6×10^{-3}	1.9×10^{-3}	3.8×10^{-3}

Use the	data	in	the	table	to	deduce	the	order	with	respect	to	P an	nd	the	order	with	respect
to Q .										_							_

Order with respect to P	
Order with respect to Q	
~	(2 marks)

(b) In a reaction between **R** and **S**, the order of reaction with respect to **R** is one, the order of reaction with respect to **S** is two and the rate constant at temperature T_1 has a value of $4.2 \times 10^{-4} \,\mathrm{mol}^{-2} \,\mathrm{dm}^6 \,\mathrm{s}^{-1}$.

	Write a rate equation for the reaction. Calculate a value for the initial rate of reaction
` /	when the initial concentration of R is 0.16 mol dm^{-3} and that of S is 0.84 mol dm^{-3} .

Kate equation	••••••
Calculation	

(ii) In a second experiment performed at a different temperature, T_2 , the initial rate of reaction is $8.1 \times 10^{-5} \,\mathrm{mol \, dm^{-3}} \,\mathrm{s^{-1}}$ when the initial concentration of \mathbf{R} is $0.76 \,\mathrm{mol \, dm^{-3}}$ and that of \mathbf{S} is $0.98 \,\mathrm{mol \, dm^{-3}}$. Calculate the value of the rate constant at temperature T_2 .

 •••••	 •••••
 •••••	

	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••

(iii)	Deduce which of T_1 and T_2 is the higher temperature.	
		(6 marks)

(iii)

5	Tetrafluoroethene,	C ₂ F ₄ , is	obtained	from	chlorodifluoromethane,	CHClF ₂ ,	according	to the
	equation:							

$$2\text{CHClF}_2(g) \rightleftharpoons \text{C}_2\text{F}_4(g) + 2\text{HCl}(g) \qquad \Delta H^{\ominus} = +128 \text{ kJ mol}^{-1}$$

- A 1.0 mol sample of CHClF₂ is placed in a container of volume 18.5 dm³ and heated. When equilibrium is reached, the mixture contains 0.20 mol of CHClF₂
 - Calculate the number of moles of C₂F₄ and the number of moles of HCl present at equilibrium.

Number of moles of C_2F_4

Number of moles of HCl

Write an expression for K_c for the equilibrium.

Calculate a value for K_c and give its units.

Calculation			

Units

State how the temperature should be changed at constant pressure to increase the (b) equilibrium yield of C₂F₄

State how the total pressure should be changed at constant temperature to increase the equilibrium yield of C₂F₄

..... (2 marks)

C₂F₄ is used to manufacture the polymer polytetrafluoroethene, PTFE. Name the type

of polymerisation involved in the formation of PTFE.

(1 *mark*)

6 Compound **U** is shown below.

(a)	Name compound	
(a)	Traine combound	•

(1	mark)

(b) (i) State why the mass spectrum of **U** contains two molecular ion peaks.

Give the m/z values of these two p	eaks.

(ii) Give the *m/z* values of these two peaks.

(2	marks)

(c) Name and outline a mechanism for the reaction of ${\bf U}$ with CH₃OH

Name of mechanism	

Mechanism

(5 marks)

SECTION B

Detach this perforated sheet.

Answer **both** questions in the space provided on pages 15 to 19 of this booklet.

- 7 (a) Describe how propanal, CH₃CH₂CHO, and propanone, CH₃COCH₃, can be distinguished using
 - (i) a chemical test and
 - (ii) the number of peaks in their proton n.m.r. spectra.

(5 marks)

(b) Compound \mathbf{Z} can be produced by the reaction of compound \mathbf{X} with compound \mathbf{Y} as shown in the synthesis outlined below.

Identify compounds **X** and **Y**.

For each of the three steps in the synthesis, name the type of reaction involved and give reagents and conditions. Equations are **not** required.

(10 marks)

Turn over

8 This question concerns the weak acid, ethanoic acid, for which the acid dissociation constant, K_a , has a value of 1.74×10^{-5} mol dm⁻³ at 25 °C.

$$K_{\rm a} = \frac{[{\rm H}^+][{\rm CH_3COO}^-]}{[{\rm CH_3COOH}]}$$

In each of the calculations below, give your answer to 2 decimal places.

(a) Write an expression for the term pH. Calculate the pH of a $0.150 \,\mathrm{mol \, dm^{-3}}$ solution of ethanoic acid.

(4 marks)

- (b) A buffer solution is prepared by mixing a solution of ethanoic acid with a solution of sodium ethanoate.
 - (i) Explain what is meant by the term buffer solution.
 - (ii) Write an equation for the reaction which occurs when a small amount of hydrochloric acid is added to this buffer solution.

(3 marks)

- (c) In a buffer solution, the concentration of ethanoic acid is 0.150 mol dm⁻³ and the concentration of sodium ethanoate is 0.100 mol dm⁻³.
 - (i) Calculate the pH of this buffer solution.
 - (ii) A $10.0\,\mathrm{cm}^3$ portion of $1.00\,\mathrm{mol\,dm}^{-3}$ hydrochloric acid is added to $1000\,\mathrm{cm}^3$ of this buffer solution.

Calculate the number of moles of ethanoic acid and the number of moles of sodium ethanoate in the solution after addition of the hydrochloric acid. Hence, find the pH of this new solution.

(8 marks)

END OF QUESTIONS

Turn over ▶

1	$\overline{}$
1	-/

Turn over ▶

1	0
	u
	7

•••••
•••••
•••••
•••••
•••••
•••••
•••••••••••
•••••
•••••
•••••
•••••
•••••
•••••

THERE ARE NO QUESTIONS PRINTED ON THIS PAGE