

QUALIFICATIONS
ALLIANCE

General Certificate of Education

Chemistry 6421

CHM4 Further Physical and Organic Chemistry

Mark Scheme

2007 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT
AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

CHM 4

Question 1

(a) (i) kPa^{-1} not $1 / \mathrm{kPa}$

$$
=\frac{90.8^{2}}{10.6^{2} \times 1.42} \quad \begin{align*}
& \text { one mark for insertion of correct } \tag{1}\\
& \text { numbers into acorrect expression } \\
& \text { These can be in either order }
\end{align*}
$$

$$
\begin{equation*}
=51.7 \quad \text { (allow } 51.6-51.9) \tag{1}
\end{equation*}
$$

(b) (i) increase
equilibrium moves to fewer gas moles or fewer moles on RHS
(ii) none
(iii) T_{2}
equilibrium moves in endothermic direction or to LHS or forward reaction is exothermic...
(c) (i) $0.08 \quad$ (NOT 0.085)
(ii) $\mathrm{pp}=$ mole fraction \times total pressure
(iii) mark consequentially on (i)

OR one mark for
$\mathrm{K}_{\mathrm{p}}=\frac{\left(\mathrm{molfnSO}_{3}\right)^{2} \mathrm{x} \mathrm{P}^{2}}{\left[\left(\mathrm{molfn} \mathrm{SO}_{2}\right)^{2} \times \mathrm{P}^{2}\right]\left[\left(\mathrm{molfnO} \mathrm{O}_{2}\right) \times \mathrm{P}\right]}$ expression to give $\mathrm{P}=\ldots$.
must specify substances
$\mathrm{P}=\frac{0.75^{2}}{0.17^{2} \times 0.08 \times 1.42}$

$$
\begin{equation*}
=171(\mathrm{kPa}) \tag{1}
\end{equation*}
$$

one mark for insertion of correct numbers into a correct expression These steps can be in either order

Total 14

Question 2

(a) (i)
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \quad$ must be []
allow $\log \frac{1}{\left[\mathrm{H}^{+}\right]}$
(ii) 0.437 or 0.44
(b) (i) $\mathrm{CO}_{3}^{2-}+\mathrm{H}^{+} \rightarrow \mathrm{HCO}_{3}^{-}$
ignore spectator ions
$\mathrm{HCO}_{3}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
$\mathrm{OR} \quad \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$
(ii) metacresol purple bromophenol blue
(iii) $\frac{40}{10^{3}} \times 0.150=6.0 \times 10^{-3}$
(iv) $\mathrm{mol} \mathrm{HCl}=12.0 \times 10^{-3}$ (consequential on (iii))
must score this to gain 2nd mark)
conc $=\frac{12.0 \times 10^{-3}}{50.0 \times 10^{-3}}=0.24 \mathrm{~mol} \mathrm{dm}^{-3}$
Total 9
Question 3
penalise pH with decimal places $\boldsymbol{\neq 2}$ once per paper
(a)

$$
\begin{array}{rll}
\mathrm{K}_{\mathrm{a}} & =\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right]} \\
{\left[\mathrm{H}^{+}\right]} & =\sqrt{ }\left(1.35 \times 10^{-5} \times 0.55\right)=2.72 \times 10^{-3} & \begin{array}{l}
\text { 5.13 (if miss square root) } \\
\text { gets } 2
\end{array} \\
\mathrm{pH} & =2.56 \text { or } 2.57 &
\end{array}
$$

(b) (i) $30.0 \times 10^{-3} \times 0.55=1.65 \times 10^{-2}$ or 0.017 (at least 2 sig figs)
(ii) $10.0 \times 10^{-3} \times 0.23=2.30 \times 10^{-3}$ or 0.0023 (at least 2 sig figs)
(iii) $\left(1.65 \times 10^{-2}\right)-\left(2.30 \times 10^{-3}\right)=1.42 \times 10^{-2} \quad$ i.e. (i) - (ii) above

if addition not subtraction, also penalise first mark gained in (iv) \dagger

(iv) if any mention of $\left[\mathrm{H}^{+}\right]^{2} /[\mathrm{HA}]$ max 1 for moles of salt mol CH $\mathrm{CH}_{2} \mathrm{COONa}=2.30 \times 10^{-3} \quad$ (may be scored in the expression)
$\left[\mathrm{H}^{+}\right]=\frac{\mathrm{Kax}\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right]}{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}\right]} *$
or $\quad=\frac{\left(1.35 \times 10^{-5}\right)\left(1.42 \times 10^{-2} / \mathrm{V}\right)}{\left(2.3 \times 10^{-3} / \mathrm{V}\right)} \quad \frac{\left(1.4 \times 10^{-5}\right)\left(1.4 \times 10^{-2} / \mathrm{V}\right)}{\left(2.3 \times 10^{-3} / \mathrm{V}\right)}$

$$
\begin{align*}
& =8.33 \times 10^{-5} \tag{1}\\
\mathrm{pH} & =4.08
\end{align*}
$$

$$
=8.5 \times 10^{-5}
$$

$$
\mathrm{pH}=4.07
$$

Total 9

[^0]
Question 4

(a) (i)

$$
\begin{array}{ll}
\mathrm{k} & =\frac{0.65}{(0.15)(0.24)^{2}} \\
=\quad \begin{array}{ll}
75.23 \text { to } 74.7 \\
\mathrm{~mol}^{-2} \mathrm{dm}^{6} \mathrm{~s}^{-1}
\end{array} & \begin{array}{l}
\text { if } k \text { upside down, } \\
\text { max } 1 \text { for consequential units }
\end{array} \\
= & \mathrm{mol}^{2} \mathrm{dm}^{-6} \mathrm{~s}^{(+}
\end{array}
$$

(ii) $\quad 0.081$ (min sig. figs required) (ignore wrong units)
(b) (i) 2
(ii) 0

Question 5

(a) (i)

(ii)

Not allow covalent O-Na

(b)

(c)

allow -CON and zwitterions and dipeptide - $\operatorname{cyclic}\left(-\mathrm{H}_{2} \mathrm{O}\right)$
Total 6
allow

Question 6

(a) (i) 2-methylbutan-1-ol (numbers essential)
(ii) optical
(b) (i) elimination not nucleophilic nor any other qualification not just dehydration
(ii)

penalise $-\mathrm{CH}_{3} \mathrm{CH}_{2}$ each time addition or radical (QOL) i.e. not additional
(iii)
 allow $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CHCH}_{3}$
(iv)

or

(1)
(c) (i)

)

allow $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COC}_{2} \mathrm{H}_{5}$
(ii) reflux (QOL)
(d) $\quad \begin{array}{ll}\text { I } & \mathrm{M} \\ & \text { II } \\ \mathrm{J}\end{array}$

III K
IV L
(e) (i) $400-1500 \mathrm{~cm}^{-1}$ allow range from [0-600] to [1200-1500]
(ii) M1 compare with spectrum of known compound / database M1 must be gained to score M2

M2 exact match or fingerprint unique

Question 7

(a) conc HNO_{3} if both conc missing can score one for both acids conc $\mathrm{H}_{2} \mathrm{SO}_{4}$ if omitted can score one for reagents in the equation ignore temp/reflux etc
$\mathrm{HNO}_{3}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NO}_{2}^{+}+\mathrm{H}_{3} \mathrm{O}^{+}+2 \mathrm{HSO}_{4}^{-} \quad$ (or in two equations) or $\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NO}_{2}^{+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{HSO}_{4}{ }^{-}$ or $\mathrm{HNO}_{3}+\mathrm{H}^{+} \rightarrow \mathrm{NO}_{2}^{+}+\mathrm{H}_{2} \mathrm{O}$

or $\mathrm{NO}_{2}{ }^{+}$

$$
\begin{equation*}
\text { or } \mathrm{H}^{+} \tag{1}
\end{equation*}
$$

or $\mathrm{C}_{6} \mathrm{H}_{6} \quad$ or $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$ electrophilic substitution

M1 arrow from within hexagon to N or to + on N
don't penalise position of + on N of $+\mathrm{NO}_{2}$
horseshoe must not extend beyond C2 to C6 but can be smaller + not too close to C 1
M3 arrow into hexagon unless Kekule
(b) 1,4-dinitrobenzene

Sn or $\mathrm{Fe} / \mathrm{HCl}$ (conc or dil or neither) ignore extra NaOH
Sn or $\mathrm{Fe} / \mathrm{H}_{2} \mathrm{SO}_{4}$ (dil or neither) not HNO_{3} at all
or $\mathrm{H}_{2} / \mathrm{Ni}$ not $\mathrm{NaBH}_{4} / \mathrm{LiAlH}_{4}$ or $\mathrm{Na} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$

allow $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{NO}_{2}\right)_{2}$ and $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{NH}_{2}\right)_{2}$
allow $6 \mathrm{H}_{2}$
lone pair or electron pair on N in Y
delocalised into ring (QOL)
less available for protonation than Ip in Z
(c)
 not $\mathrm{C}_{4} \mathrm{H}_{8}$ ignore [] or n
but must have trailing bonds
allow -NHCO-

Question 8

(a) (i) N-methylpropanamide
nucleophilic addition-elimination

must show a bond to $-\mathrm{NH}_{2}$ to gain M1
penalise : Cl^{-}attacking H in M4
(ii)

allow $\mathrm{C}_{2} \mathrm{H}_{5}$ so minimum is
$\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CO}\right)_{2} \mathrm{O}$
(iii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CONHCH}_{3}^{+} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}^{+}+\mathrm{CH}_{3} \mathrm{NH}^{-}$

* or $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NO}^{+}{ }^{+}$
(1)
(1)
(1)
be lenient on position of + and dot
(b) Reaction 1 Nucleophilic addition

$\begin{array}{lll}\text { Reaction } 2 & \mathrm{H}_{2} / \mathrm{Ni} & \mathrm{Na} \text { hydrogenation or reduction } \\ \text { hydral } & \text { or } \mathrm{LiAlH}_{4} \\ \text { reduction }\end{array}$
* if you suspect erratum sheet was not circulated, $\mathrm{CH}_{3} \mathrm{CON}^{+}$is 57 allow $\mathrm{CH}_{3} \mathrm{CONHCH}_{3}^{+.} \rightarrow \mathrm{CH}_{3} \mathrm{CON}^{+}+\mathrm{HCH}_{3}$ or CH_{4}

[^0]: * expression may be pH $=$ pKa + log[salt/acid] or pKa - log[acid/salt]
 \dagger if addition, 3.96-3.97 gets two in part (iv)

