AQA

ASSESSMENT and
OUALIFICATIONS
ALLIANCE

General Certificate of Education

Chemistry 6421

CHM4 Further Physical and Organic Chemistry

Mark Scheme
 2006 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

CHM4

SECTION A

Question 1

(a) $\mathrm{CH}_{3} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{3}+\mathrm{H}_{2} \mathrm{O}$
(b) (nucleophilic) addition-elimination NOT acylation
 ignore use of Cl^{-}to remove H^{+}
(c)

allow $\mathrm{C}_{2} \mathrm{H}_{5}$ and $-\mathrm{CO}_{2}-$ allow $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCOCH}_{2} \mathrm{CH}_{3}$
or $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}\right)_{2} \mathrm{O}$
(d) (i) faster/not reversible/bigger yield/purer product/no(acid) (catalyst) required
(ii) anhydride less easily hydrolysed or reaction less violent/exothermic no (corrosive) (HCl) fumes formed or safer or less toxic/dangerous expense of acid chloride or anhydride cheaper
(e) (i) $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2}$

Allow - $\mathrm{CO}_{2}-\quad$ allow $\mathrm{C}_{6} \mathrm{H}_{5}$

 any

4

Total 12

Question 2

(a) (i) Increase (if wrong no further marks in part (i)
higher P gives lower yield or moves to left
Eqm shifts to reduce P or eqm favours side with fewer moles
(ii) Endothermic if wrong no further marks in part (ii) 1
increase T increases yield or moves to right
Eqm shifts to reduce T or eqm favours endothermic direction 1
(b) (i) Moles of iodine $=0.023 \quad$ If wrong no marks in (i) $\quad 1$

Moles of HI $=0.172$
If $\times 2$ missed, max 1 in part (iv)
(ii) $K_{\mathrm{c}}=\frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}{[\mathrm{HI}]^{2}}$
must be square brackets (penalise once in paper)

- if round, penalise but mark on in (iv)
if K_{c} wrong, no marks in (iv) either but mark on from a minor slip in formula
(iii) V cancels in K_{c} expression or no moles same on top and bottom of expression
or total moles reactants $=$ moles products, i.e. total no of moles does not change
(iv) $K_{\mathrm{c}}=\frac{(0.023)^{2}}{(0.172)^{2}}$

$$
=0.0179 \text { or } 1.79 \times 10^{-2}
$$

Conseq on (i)

Allow 0.018 or 1.8×10^{-2}
Conseq i.e. (answer to (iv) $)^{-1}$
(v) $K_{\mathrm{c}}=55.9$ or 56

1

1

Question 3

(a) $-\log \left[\mathrm{H}^{+}\right]$
4.57×10^{-3} allow 4.6×10^{-3}
ecf if [] wrong and already penalised
ignore units 1
(b) (i) $K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{X}^{-}\right]}{[\mathrm{HX}]}$ allow HA etc not $\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HX}]}$ but mark on

If expression wrong allow conseq units in (ii) but no other marks in (ii)
(ii) $\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HX}]}=\frac{\left(4 \cdot 57 \times 10^{-3}\right)^{2}}{[0 \cdot 150]}$

$$
=1.39 \times 10^{-4}
$$

allow $1.39-1.41 \times 10^{-4}$
$\mathrm{mol} \mathrm{dm}{ }^{-3}$
(iii) $p K_{\mathrm{a}}=3.86$

Penalise dp of final answer $<$ or >2 in pH once in paper
(c) (i) $\frac{30}{1000} \times 0.480=0.0144$ or $1.4(4) \times 10^{-2}$ Mark is for answer $\quad(\mathrm{M} 1) \quad 1$
(ii) $\frac{18}{1000} \times 0.350=0.0063$ or 6.3×10^{-3} Mark is for answer \quad (M2) 1
(iii) $0.0144-2(0.0063)=1.80 \times 10^{-3} \quad$ M3 is for (i) $-2($ ii $) \quad 1$ If $x 2$ missed, CE i.e. lose M3 and the next mark gained
(iv) $1.80 \times 10^{-3} \times \frac{1000}{48}=0.0375$ (0.038)

M4 is for answer 1

If vol is not 48×10^{-3} (unless AE) lose M4 and next mark gained If vol is 48 - this is $\mathrm{AE}-$ i.e. lose only M4
If multiply by 48×10^{-3} this is $\mathrm{AE}-$ i.e. lose only M4
(v) $10^{-14} / 0.0375 \quad\left(10^{-14} / 0.038\right) \quad \mathrm{M} 5$ for $K_{\mathrm{w}} /\left[\mathrm{OH}^{-}\right]$
or pOH
$\left(=2.66 \times 10^{-13}\right) \quad\left(=2.63 \times 10^{-13}\right)$
or $\mathrm{pOH}=1.426 \quad($ or $\mathrm{pOH}=1.420)$
If no attempt to use K_{w} or pOH lose both M5 and M6
$\mathrm{pH}=12.57 \quad$ (12.58) M6
1
Allow M6 conseq on AE in M5 if method OK
Total mark 13

Question 4

(a) (i) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}$

Addition or radical (QoL) 1
(ii) $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$ or with no brackets 1
butan(e)-2,3-diol or 2,3-butan(e)diol 1

2,3-dimethylbutan(e)dioic acid
2,3-dimethylbutan(e)dioyl chloride
1 ignore -1,4-
condensation (QoL)
(iii) NaOH or HCl etc or $\mathrm{Na}_{2} \mathrm{CO}_{3}$

Allow conc sulphuric/nitric
(b) Structure 1

NOT water nor acidified water 1 nor weak acids

Allow -CONH- and -COHN-
Allow zwitterions
NOT polypeptides/repeating units 1

Structure 2 either of

or

1
(c) (i) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$
(ii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}$
allow - Cl , -I
(iii) (nucleophilic) substitution or from $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$
further substitution/reaction occurs or other products are formed
one of
$\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NH}$
$\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}$
$\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{4} \mathrm{~N}^{+} \mathrm{Br}^{-}$
if reduction written here, no

Allow reduction forms only one product

Allow salts including $\mathrm{NH}_{4} \mathrm{Br}$
Allow HBr

Question 5

(a) $k=$ rate $/\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{3}\right]\left[\mathrm{H}^{+}\right]$
or

$$
\begin{aligned}
& =\frac{1.15 \times 10^{-4}}{(0.150)(0.555)} \\
& =1.38 \times 10^{-3} \text { to } 1.4 \times 10^{-3}
\end{aligned}
$$

$$
\mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1}
$$

(b) ans $=$ rate constant $\times(1 / 2 \times 0.150) \times(1 / 2 \times 0.555)$
ignore units
$=$ rate constant $\times 0.0208$
$2.88 \times 10^{-5} \quad\left(1.38 \times 10^{-3}\right.$ gives $\left.2.87 \times 10^{-5}\right)$
Allow $2.87-2.91 \times 10^{-5} \quad\left(1.4 \times 10^{-3}\right.$ gives $\left.2.91 \times 10^{-5}\right)$
(c) $\left[\mathrm{H}^{+}\right]=$rate $/ \mathrm{k}\left[\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right] \quad 1$

$$
\begin{aligned}
& =\frac{4.56 \times 10^{-5}}{\left(8.94 \times 10^{-4}\right)(0 \cdot 123)} \\
& =0.415(0.4146)
\end{aligned}
$$

$\mathrm{pH}=0.38$ mark independently $\quad\left[\mathrm{H}^{+}\right]=0.41$ gives $\mathrm{pH}=0.39$

SECTION B

Question 6

equation (1)
penalise wrong alkyl group once at first error position of + on electrophile can be on O or C or outside [] penalise wrong curly arrow in the equation or lone pair on AlCl_{3} else ignore
Electrophilic_substitution
NOT F/C acylation
horseshoe must not extend

beyond C2 to C6 but can be smaller

+ not too close to C1
M3 arrow into hexagon unless Kekule allow M3 arrow independent of M2 structure

M1 arrow from within ${ }_{+}$hexagon to C or to +onC

+ must be on C of RCO
(6 marks)
(b) Nucleophilic_addition
NOT reduction

M2 not allowed independent, but can allow M1 for attack of H^{-}on $\mathrm{C}+$ formed
M3
1-phenylethan(-1-)ol or (1-hydroxyethyl)benzene
(c) dehydration or elimination
(conc) $\mathrm{H}_{2} \mathrm{SO}_{4}$ or (conc) $\mathrm{H}_{3} \mathrm{PO}_{4}$ allow dilute and $\mathrm{Al}_{2} \mathrm{O}_{3}$

Do not allow iron oxides

Question 7

(a) $\mathbf{X}(\mathrm{O}-\mathrm{H}) \underline{\text { (alcohols) }} \quad$ penalise acid or missing "alcohol" 1
$\mathbf{Y} \mathrm{C}=\mathrm{O}$ allow carbonyl 1

A
(b)

Allow conseq dibromocompounds following incorrect unbranched alkenes
NOT allow dibromocompound consequent on a duplicate alkene
NOT allow monobromocompounds if HBr added

6:3:1 either next to correct structure or to none
Allow a mark for identifying correct dibromocompound with three peaks even if integration ratio is wrong
if 6:3:1 missing or wrong, no marks for splitting
Only award a mark for splitting if it is clear which integration number it refers to
6 singlet or drawn
3 doublet or drawn
1 quartet/quadruplet or drawn

