

General Certificate of Education

Chemistry 5421

CHM4 Further Physical and Organic Chemistry

Mark Scheme

2005 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

(a)	propy	rl methanoate;	1
	HCO	$OC_3H_7 + OH^- \rightarrow HCOO^- + C_3H_7OH$	
	OR		
	HCO	$OC_3H_7 + NaOH \rightarrow HCOONa + C_3H_7OH;$	1
	order	wrt $A = 1;$	1
	order	wrt NaOH = 1;	1
	Initial	l rate in Exp $4 = 2.4 \times 10^{-3}$;	1
(b)	(i)	r(ate) = k[A]	
		OR	
		r(ate) = k[A][NaOH] ⁰ ; (penalise missing [] but mark on) (penalise missing [] once per paper)	1
		(if wrong order, allow only units mark conseq on their rate eqs) (penalise k_a or k_w etc)	
	(ii)	$k = \frac{9.0 \times 10^{-3}}{0.02};$ = 0.45; s ⁻¹ ;	1 1 1
	(iii)	(large) excess of OH ⁻ or [OH ⁻] is large/high;	1
		[OH ⁻] is (effectively) constant	
(d)	(i)	OR CH_2OH $[f^{+}]$ 4s the limiting factor; CHOH CH_2OH ;	1
		propan(e)-1,2,3-triol OR	

		1,2,3-propan(e)triol	
		Glycerol;	1
	(ii)	$CH_3(CH_2)_{16}COONa$ or $C_{17}H_{35}COONa$ or $C_{18}H_{35}O_2Na;$ (<i>ignore 3 in front of formula but not if indicating trimer</i>)	1
		(not just anion and penalise Na shown as covalently bonded) soap – allow with detergent but not detergent alone;	1 Total 15
Ques	tion 2		
(a)	(i)	B; C; A;	1 1 1
	(ii)	cresolphthalein	
		OR	
		thymolphthalein;	1
(b)	(i)	-log[H ⁺];	1
	(ii)	$[H^+] = 1.259 \times 10^{-12} \text{ (or } 1.26 \text{ or } 1.3) \qquad OR \qquad \text{pOH} = 14 \text{ - pH};$	1
		$[OH^{-}] = \frac{10^{-14}}{1.258 \times 10^{-12}} \qquad OR = 2.10;$	1
		= 7.9(4) × 10 ⁻³ ; (if $[H^+]$ is wrong allow 1 for $[OH] = K_w/[H^+]$ or as numbers)	1
(c)	(i)	$K_a = [H^+]^2 / [CH_3 CH_2 COOH]$	
		OR	
		$[H^+]^2/[HA]$	
		OR	
		$[H^+] = [A^-]$ etc;	1
		[H ⁺] = $\sqrt{1.35 \times 10^{-5}} \times 0.117$ or expression without numbers;	1
		$1.257 \dots 10^{-3}$	

$$= 1.257 \times 10^{-5}$$

pH $= 2.90;$ 1

(ii)	$K_a = [H^+]$	
	OR	
	$pK_a = pH;$	1
	pH = 4.8 <u>7;</u> (penalise 1dp once)	1

Total 13

necleophilic addition; (a)

(be lenient on position of charge on CN) (M2 not allowed independent of M1, but allow M1 for correct attack on C+ *if M2 show as independent first.)* (+on C of C=O loses M2 but ignore + if correct) (M4 for arrow and lone pair (only allow for correct M3 or close))

(one unit only) (ignore brackets or n) (trailing bonds are needed)

(ii) can be hydrolysed

OR

can be reacted with/attacked by acid/base/nucleophiles/H2O/OH-;

www.theallpapers.com

1

1

1

1

1

1

1

CHM4 – AQA GCE Mark Scheme, 2005 June series CH₃CH₂

;

$$(allow - NH_3^+)$$

(ii)

$$CH_{3}CH_{2} - C - H$$

$$COOH;$$
(or zwitterions product)
(or substitution; 1)

(iii) nucleophilic substitution;

Total 14

1

(a)	(i)	H ₃ C—	C O or RCOCH ₃ ;		1
		(or des (ignore	scription in words) e trailing bonds)		
	(ii)	H ₃ C—((allow	^O or ROCH ₃ ; 1 if both (i) and (ii) give	CH_3 - or H_3C - only)	1
	(iii)	CH ₂ CI	H ₂ or two <u>adjacent</u> methy	lene groups;	1
	(iv)	CH₃∙C ∥ O	CH ₂ ·CH ₂ ·OCH ₃		
		OR			
		CH ₃ CO	DCH ₂ CH ₂ OCH ₃ ;		1
(b)	(i) (ii)	OH <u>in</u>	CH ₃ CH ₃	id present	1
		0113	CH ₃ ;		1
(c)	r	eagent	$K_2 C r_2 O_7 \ /H^+$	KMnO ₄ /H ⁺	1
		Y	no reaction	no reaction	1

reagent	$K_2 C r_2 O_7 \ /H^+$	KMnO ₄ /H ⁺
Y	no reaction	no reaction
Ζ	orange to green or turns	purple to colourless
	green	or turns colourless

Total 9

1

www.theallpapers.com

- (a) electrophilic substitution; conc $HNO_{3;}$ conc H_2SO_4 either or both conc missing scores one for both acids;
- (b) Sn or Fe/HCl (conc or dil or neither); (ignore extra NaOH) Sn or Fe/H₂SO₄ (dil or neither) (not HNO₃ at all) or H₂/Ni (not NaBH₄/LiAlH₄ or Na/C₂H₅OH)

(d)

(e)

G

1

1

1

1

1

1

1

1

www.theallpapers.com

(a) (must state correct effect on yield or rate to score the reason mark)

Т	effect:	higher temp:	yield greater or shifts equm to right;		1
	effect:	higher temp:	rate increased;		1
	reason:	endothermic			
		OR			
		more particles h	nave E>E _a		
		OR			
		more successful	l/productive collisions;		1
р	effect [.]	higher pressure	· vield less or shifts eaum to left		1
•	effect:	higher pressure	· rate increased:		1
	reason.	increase in gas	moles L to R		1
	icason.	OP			
					1
		greater comstor	n Irequency;		1
M1	equilibr	rium moles of Co	O = 62.8 - 26.2 = 36.6		1
M2	equilibr	ium moles of H	$_2 = 146 - 2(26.2) = 93.6$		1
M3	total no	moles = $36.6 +$	-93.3 + 26.2 = 156.4		1
N/ 4		1 .	function w total management		1
	T P M1 M2 M3	 T effect: effect: reason: P effect: effect: reason: M1 equilibristic M2 equilibristic M3 total no 	Teffect:higher temp: effect:higher temp: reason:endothermic OR more particles I OR more successfuPeffect:higher pressure effect:higher pressure reason:Peffect:higher pressure reason:increase in gas OR greater collisionM1equilibrium moles of CO equilibrium moles of H M3total no moles = $36.6 + 100$	Teffect:higher temp:yield greater or shifts equm to right;effect:higher temp:rate increased;reason:endothermic OR more particles have $E > E_a$ OR more successful/productive collisions;Peffect:higher pressure:yield less or shifts equm to left;effect:higher pressure:reason:increase in gas moles L to R OR greater collision frequency;M1equilibrium moles of CO = 62.8 - 26.2 = 36.6M2equilibrium moles of H2 = 146 - 2(26.2) = 93.6M3total no moles = 36.6 + 93.3 + 26.2 = 156.4M4matrial pressure:matrial pressure:matrial fraction x total pressure:	Teffect:higher temp:yield greater or shifts equm to right; rate increased; reason:endother temp: rate increased; reason:endother temp: reason; endother temp: OR more particles have $E > E_a$ OR more successful/productive collisions;Peffect:higher pressure:yield less or shifts equm to left; effect:effect:higher pressure:rate increased; reason:increase in gas moles L to R OR greater collision frequency;M1equilibrium moles of CO = $62.8 - 26.2 = 36.6$ M2equilibrium moles of H2 = $146 - 2(26.2) = 93.6$ M3M3total no moles = $36.6 + 93.3 + 26.2 = 156.4$

M5
$$K_p = \frac{PCH_3OH}{p_{CO} \times p_{H_2}^2}$$
 1

$$M6 = \frac{\left(\frac{26.2}{156.4} \times 9.50\right)}{\left(\frac{36.6}{156.4} \times 9.50\right) \times \left(\frac{93.6}{156.4} \times 9.50\right)^2}$$
$$\frac{(0.168 \times 9.50)}{(0.234 \times 9.50) \times (0.598 \times 9.50)^2}$$
$$= \frac{(1.59)}{(2.22) \times (5.69)^2} \qquad 1$$
$$M7 = 0.022(1) \qquad 2.2(1) \times 10^{-8} \qquad 2.2(1) \times 10^{-14} \qquad 1$$

(If no subtraction lose M1, M2 and M3)

(If $\times 2$ missed in M2, lose both M2 and M3)

(If M1 gained but moles of $H_2 = 73.2$ (i.e. double CO), M2 and M3 lost)

(If M1 gained but mol $H_2 = 2(146 - 26.2)$, M2 and M3 lost)

(If M1 and M2 correct but M3 lost for CE, penalise M6 also)

(M4 can be gained from the numbers in the expression for M6 even if these numbers are wrong) (If Kp contains [] lose M5 but then mark on)

(If chemically wrong expression for Kp, lose M5, M6 and M7 (allow M8 conseq on their K_p))

(If divided by 9.5, or not used 9.5 at all, lose M6 and M7 (and M4))

(If tried to convert to kPa and is factor(s) of 10 out, penalise in M6 and allow M8 for kPa^{-2})

www.theallpapers.com

(a) (nucleophilic) addition-elimination;

(M3 for structure)
(M4 for 3 arrows and lone pair)
(M2 not allowed independent of M1, but allow M1 for correct attack on C+ if M2 show as independent first.)
(+on C of C=O loses M2 but ignore + if correct)
(Cl removing H⁺ loses M4)

$$CH_3CH_2 - C$$

NHCH₃.

(If M3 lost above for wrong C chain, do not penalise same error again here)

(b)
$$CH_3CH_2COCl + AlCl_3 \rightarrow [CH_3CH_2CO]^+ + AlCl_4;$$

(penalise wrong alkyl group once at first error) (position of + on electrophile can be on O or C or outside []) (penalise wrong curly arrow in the equation or lone pair on AlCl₃)

(or can be gained in mechanism)

1

4

1

1

(c)	M1	$CH_3CH_2COCl + H_2O \rightarrow CH_3CH_2COOH + HCl$ (penalise wrong alkyl group once at first error)	1
	M2	M_r of $CH_3CH_2COCl = 92.5$ (if M_r wrong, penalise M2 only)	1
	M3	moles of $CH_3CH_2COC1 = 1.48/92.5 = 0.016$	1
	M4	moles NaOH = $2 \times 0.016 = 0.032$ (allow for $\times 2$ conseq to wrong no of moles)	1
	M5	volume of NaOH = $0.032/0.42 = 0.0762 \text{ dm}^3$ or 76.2 cm^3 (with correct units) (if $\times 2$ missed in M4 lose M5 also)	1

Total 16

GENERAL ORGANIC POINTS FOR MARKING CHM4

1 Curly arrows

These must show the movement of a pair of electrons,

i.e. from a bond or a lone pair either to an atom (example 1) or to the space between two atoms (example 2)

Curly arrows never start at an atom e.g. the right hand arrow in example 3 is wrong

2 Incorrect Structures which are generally penalised once per paper:

- a) Sticks, i.e. bonds without (hydrogen) atoms on their ends, e.g.
- b) Incorrectly bonded functional groups e.g.

correct	H 	H	H 	H
	R — C — OH	OH— C — R	R — C — H	$H_2N - C - R$
	Н	Н	OH	Н
wrong	H 	H 	H 	H
	R — C — HO	OH — C — R	R — C — H	$NH_2 - C - R$
	Н	Н	OH	Н

Alkyl groups, however, can be written in several different ways. The following alkyl group arrangements are allowed as correct:

CH ₃	H ₃ C —	— CH ₃	CH ₃	CH ₃
			I	I

c) cyclohexane for benzene **penalised once per paper**