

Mark scheme June 2003

GCE

Chemistry

Unit CHM4

Copyright © 2003 AQA and its licensors. All rights reserved.

	expe meas	riment sured t	ts carried out a using different of action with resp	t the same to	emperature is of A and	e. In each	experiment tesults were	he initial rate used to deduce	was
	(a)	What	is meant by the	e term <i>order</i>	of reaction	with respec	t to A?		
			power of						
	·	10	-shown as	x in]		(1 m	ark)
	(b)		the concentrate of 4. Deduce t				d, the initial	rate increased	by a
			2	(1)					
								(1 m	ark)
	(c)		other experiment ntration of B wa						
•		(i)	Deduce the ord	ler of reactio	n with resp	ect to A an	d the order v	vith respect to	B.
٠			Order with resp	ect to A	2	<u>(')</u>			•••••
			Order with resp	ect to B	0	<u>(ı)</u>			••••••
			Using your ans suggest suitable	units for the	rate const	ant.	-		
allow c	onseq	'	Rate equation —— Units for the rat	(rate	=) k	[A] ²	(1)	•••••	••••••
		ĺ	—— Units for the rat	e constant	mol	-1 dm ³	s (1)		•••••
		cons	eg on rate e	quation					
1.		•		T				(4 ma	rks)

	mixture of 0.345 mol of PCl ₃ at a constant temperature, the fo		-	*
	$PCl_3(g) + Cl_2(g) \rightleftharpoons l$	PCl ₅ (g)	$\Delta H^{\circ} = -93 \mathrm{kJ} \mathrm{mol}^{-}$	1 .
At equilib	orium, 0.166 mol of PCl ₅ had be	en formed and	l the total pressure	was 225 kPa.
(a) (i)	•			
	Moles of PCl ₃ 0.345	-0.166	= 0.179	(1)] (3Sig)
	Moles of Cl ₂ 0 · 268 -	- 0.166	= 0.102	(1)
(ii)	Calculate the total number o			
	Conseq on (i)	(1)	(allow 2sig figs (3 marks)
(b) Cald	ulate the mole fraction and the	e partial pressu	are of PCl ₃ in the e	quilibrium mixture.
Mol	e fraction of PCl ₃	1) = 0.1	1 (00)	
Parti	al pressure of PCl ₃	mol f ⁿ	× total P	(1)
······		0.400 ×	225 =	90(1) (LPa)
				(1) (3 marks)
(c) (i)	Write an expression for the ed			
	Kp =		ignore stacks	ets except L J
	$K_{p} = \frac{P_{PG15}}{P_{PG3}} \times \frac{P_{PG2}}{Q_{2}}$	(')	must show	<u> </u>
If $kp \times in(i)$ Allow max 2 for	The partial pressures of Cl_2 an 83.6 kPa, respectively, and the value of K_2 at this temperature	d PCl ₅ in the e total pressure e and state its	equilibrium mixture e remained at 225; units. 1-81 × 10-5	e were 51.3 kPa and kPa. Calculate the
analitation of numbers	$K_p = \frac{83.6}{90.1 \times 51.3}$	= 1	·81)× 10	kla-
and conseq units	90·1 × 51·3	••••••	(1)	(1.)
	(1)		•••••	
(d) State	(1) 1 83.6 and 51.3 wrong the effect on the mole fraction	of PCl ₃ in the	AE - 1, 6.8 equilibrium mixtu	Welt = $ (4 \text{ marks}) $ Bl $\times 0^{-3} $ are if
	the volume of the vessel were		•	
	increased			-
(ii)	the temperature were to be inc		stant volume.	
				allpapers.com ⁽² ,com

3	(a)	At 50 °C, the ionic product of water	K_{w}	has the v	alue	5.48×10^{-14}	4 mol 2	dm ⁻⁶ .

- or in words or below (i) Define the term $K_{\rm w}$ $K_W = [H^+][OH^-]$) (1) unless contradiction
- (ii) Define the term pH $pH = -\log [H^+]$ (1)
- Calculate the pH of pure water at 50 °C. Explain why pure water at 50 °C is still neutral even though its pH is not 7.

 $\sqrt{5.48 \times 10^{-14}}$ (1) Calculation

 $\therefore pH = 6.63 \text{ or } 6.64 (1)$

(5 marks)

- (b) At 25 °C, K_w has the value 1.00×10^{-14} mol² dm⁻⁶. Calculate the pH at 25 °C of
 - a 0.150 mol dm⁻³ solution of sodium hydroxide, [OH-] = 0.150

pH = 13.18 (1)

the solution formed when 35.0 cm³ of this solution of sodium hydroxide is mixed with 40.0 cm³ of a 0.120 mol dm⁻³ solution of hydrochloric acid.

moles $0H^- = (35 \times 10^{-3}) \times 0.150 = 5.25 \times 10^{-3}$

 40×10^{-3} × 0.120 = 4.80) × 10⁻³ (1) excess moles of OH = 4.5×10^{-4}

 $= 6.00) \times 10^{-3}$ $= 1.66 \times 10^{-12} \text{ or}$ $= 1.66 \times 10^{-12} \text{ or}$

 $h = 11.78 (i)^{f}$

(8 marks)

- (c) In a 0.150 mol dm⁻³ solution of a weak acid HX at 25 °C, 1.80% of the acid molecules are dissociated into ions.
 - (i) Write an expression for K_a for the acid HX.

$$K_{a} = \frac{[H^{+}][X^{-}]}{[HX]}$$

(ii) Calculate the value of K_a for the acid HX at this temperature and state its units.

$$[H^{+}] = 1.80 \times 10^{-2} \times 0.150 = 2.70 \times 10^{-3} \text{ (1)}$$

$$Ka = [H^{+}]^{2} = (2.70 \times 10^{-3})^{2} = 4.86 \times 10^{-5} \text{ mol dm}$$

$$[HX] \qquad 0.150 \qquad (1) \qquad (1)$$

$$(1)$$

$$[0 \sim (2.70 \times 10^{-3})^{2} = 4.95 \times 10^{-5}]$$

$$0.1473$$

(5 marks)

Qu3	(a)	If K _w includes H ₂ O allow 6.63 if seen otherwise no m	arks likely
	(b)(ii)	If no vol, max 4 for a, b, c, f	answer = 10.65
		If wrong volume, max 5 for a, b, c, e, f	
		If no subtraction max 3 for a, b, d.	
		If missing 1000 max 5 for a, b, c, d, f	answer = 8.78
		If uses excess as acid, max 4 for a, b, d, f,	answer = 2.22
		If uses excess as acid and no volume, max 2 for a,b,	(answer = 3.35)
	(c)	If wrong K _a in (i) max 2 in part (ii) for [H ⁺] (1) and co	onseq units (1)

but mark on fully from minor errors eg no [] or charges missing

4 (a) Outline a mechanism for the reaction of CH₃CH₂CH₂CHO with HCN and name the product.

Mechanism

(1) M2

Ollow
$$C_3H_7$$

if structure

shown

elsewhere

$$O(\cdot, J) H^+$$

elsewhere
$$O(\cdot, J) M_4$$

$$O($$

(b) Outline a mechanism for the reaction of CH₃OH with CH₃CH₂COCl and name the organic product.

Mechanism
$$M^{2}$$

$$(1)$$

$$(CH_{3}CH_{2}) = C - CC \rightarrow CH_{3}CH_{2} - C - CC \rightarrow CH$$

(c) An equation for the formation of phenylethanone is shown below. In this reaction a reactive intermediate is formed from ethanoyl chloride. This intermediate then reacts with benzene.

- (i) Give the formula of the reactive intermediate.
- (ii) Outline a mechanism for the reaction of this intermediate with benzene to form phenylethanone.

$$\begin{array}{cccc}
& & & & & & & & & \\
& & & & & & & \\
\downarrow & & & & & & \\
\downarrow & & & & & & \\
\downarrow & & \\
\downarrow$$

extra curly arrows are penalised

abc

(4 marks)

-	(a)	be lenient on position of negative sign on :CN but arrow must come from lp
	(a)/(b)	C=C alone loses M2 but can score M1 for attack on C ⁺ , similarly C—Cl
	(a)	allow 2-hydroxypentanonitrile or 2-hydroxypenta(ne)nitrile not pentylnitrile
	(b)	in M4, allow extra :Cl attack on H, showing loss of H.
	(c)(i)	Allow formula in an "equation" (balanced or not); be lenient on the position of the + on the formula
	(c)(ii)	for M1 the arrow must go to the C or the + on the C

don't be too harsh about the horseshoe, but + must not be close to the saturated C

M3 must be final step not earlier; allow M3 even if structure (M2) is wrong

5 The hydrocarbon M has the structure shown below.

(i) Name hydrocarbon M.

not ... butan 2-methylbut-1-ene (1)

allow C2H5)

(ii) Draw the repeating unit of the polymer which can be formed from M. State the type of polymerisation occurring in this reaction.

(-) c- c+2(-) (1) Repeating unit Type of polymerisation

The reaction between M and benzene in the presence of HCl and AlCl₃ is similar to the reaction between ethene and benzene under the same conditions. Name the type of mechanism involved and draw the structure of the major product formed

in the reaction between M and benzene. electrophilic substitution (1) Name of mechanism

Major product (1)

Draw a structural isomer of M which shows geometrical isomerism.

CH2CH=CHCH2CH3 (1)

(6 marks)

Draw the repeating unit of the polymer formed by the reaction between butanedioic acid and hexane-1,6-diamine. State the type of polymerisation occurring in this reaction and give a name for the linkage between the monomer units in this polymer.

Repeating unit

Type of polymerisation

Name of linkage ... P.00

www.theallpapers.co

SECTION B

Answer both the questions in the space provided on pages 12 to 16 of this booklet.

6 Use the data given on the back of the Periodic Table on page 3 of this booklet to help you answer this question.

Compounds A to G are all isomers with the molecular formula $C_6H_{12}O_2$

- (a) Isomer A, C₆H₁₂O₂, is a neutral compound and is formed by the reaction between compounds X and Y in the presence of a small amount of concentrated sulphuric acid. X and Y can both be formed from propanal by different redox reactions. X has an absorption in its infra-red spectrum at 1750 cm⁻¹.
 Deduce the structural formulae of A, X and Y. Give suitable reagents, in each case, for the formation of X and Y from propanal and state the role of concentrated sulphuric acid in the formation of A.
- (b) Isomers B, C, D and E all react with aqueous sodium carbonate to produce carbon dioxide.

Deduce the structural formulae of the three isomers that contain an asymmetric carbon atom.

The fourth isomer has only three singlet peaks in its proton n.m.r. spectrum. Deduce the structural formula of this isomer and label it E. (4 marks)

(c) Isomer \mathbf{F} , $C_6H_{12}O_2$, has the structural formula shown below, on which some of the protons have been labelled.

$$a$$
 b
 \parallel
 $CH_3-CH_2-O-CH_2-CH_2-C-CH_3$

A proton n.m.r. spectrum is obtained for \mathbf{F} . Using Table 1 on page 4 of this booklet, predict a value of δ for the protons labelled a and also for those labelled b. State and account for the splitting patterns of the peaks assigned to the protons a and b.

(6 marks)

(d) Isomer G, C₆H₁₂O₂, contains six carbon atoms in a ring. It has an absorption in its infra-red spectrum at 3270 cm⁻¹ and shows only three different proton environments in its proton n.m.r. spectrum. Deduce a structural formula for G. (2 marks)

Mark Scheme

1	1	
5	(b)	allow outer horizontal bonds to be omitted allow HO-[]-H if [] shows the repeating unit.; if brackets missing in the dimer, penalise one. penalise C ₂ H ₄ or C ₆ H ₁₂ first time only allow CONH allow polypeptide or polyamide; peptide or amide must be spelled correctly
		www.tneaiipapers.com

- 7 (a) Outline a mechanism for the formation of ethylamine from bromoethane. State why the ethylamine formed is contaminated with other amines. Suggest how the reaction conditions could be modified to minimise this contamination. (6 marks)
 - (b) Suggest one reason why phenylamine cannot be prepared from bromobenzene in a similar way. Outline a synthesis of phenylamine from benzene. In your answer you should give reagents and conditions for each step, but equations and mechanisms are not required.

 (5 marks)

END OF QUESTIONS

6	(a)	first mark for C=O stated or shown in X (Ignore wrong names) Y CH3CH2CH2OH allow C3H7 in A if Y correct. or vice versa Allow (1) for A if correct conseq to wrong X and Y
	(a)	other oxidising agents: acidified KMnO4; Tollens; Fehlings
	(a)	other reducing agents: LiAlH ₄ ; Na/ethanol; Ni/H ₂ ; Zn or Sn or Fe/HCl
	(b)	give (1) for carboxylic acid stated or COOH shown in each suggestion (1) for correct E any 2 out of 3 for B, C or D. allow C ₃ H ₇ for either the B or D shown on the mark scheme i.e. a correct structure labelled B, C or D will gain 2.
	(c)	protons a – quartet must be correct to score 3 adjacent H mark. Same for b
	(d)	allow (1) for any OH (alcohol) shown correctly in any structure – ignore extra functional groups. Structure must be completely correct to gain second mark
	••••••	
•••••	•	
	•••••••••••••••••••••••••••••••••••••••	

(a) X contains \(\) = 0 \(\) \(\) int allow remaining max \(\beta \) \(\)	· (Question 6 (see also page 12)
: X is lt/3ct/c00H () Y is ct/3ct/ct/20H () A is ct/3ct/ct/20H () Coct/3ct/2ct/3 Oct/3ct/2ct/3 Nagent: Acidified K2Cr2O7 (1) Propanal Y reagent: NaBH4 (1) conc H2SO4: eatalyst (1) [7 rotal] (b) Ct/3ct/2ct/2-c-cooH (1) Ct/3-ct/2-c-ct/2cooH (1) ct/3 B ct/3 C tt/3 C tt/3 C tt/3 C ct/3 C ct/3 C ct/3 C ct/3 Ct/3 C ct/3 Ct/3 C ct/3 Ct/3 C ct/3 C ct/3 C ct/3 C ct/3 Ct/3 C	_	The second of the severed lose this mark
CH3CH2CH2CH3 CH3CH2CH2CH3 CH3CH2CH2CH3 CH3CH2CH2CH3 CH3CH2CH2CH2 CONC H2SO4: eatalyst (1) CH3-CH2-C-CH2COOH (1) CH3-CH2-C-CH2COOH (1) CH3-C-C-CH2-COOH (1) CH3-C-C-CH2-C-CH2-COOH (1) CH3-C-C-CH2-C-CH2-COOH (1) CH3-C-C-CH2-C-CH2-COOH (1) CH3-C-C-CH2-C-CH2-C-CH2-COOH (1) CH3-C-C-CH2-C-CH2-C-CH2-COOH (1) CH3-C-C-CH2-C-CH2-C-C-CH2-COOH (1) CH3-C-C-CH2-C-CH2-C-CH2-C-CH2-C-CH2-COOH (1) CH3-C-C-CH2-C-CH2-C-CH2-C-CH2-C-CH2-COOH (1) CH3-C-C-CH2-C-CH2-C-C-CH2-C-CH2-COOH (1) CH3-C-C-CH2-C-CH2-C-CH2-C-C-CH2-COOH (1) CH3-C-C-CH2-C-CH2-C-CH2-C-C-CH2-COOH (1) CH3-C-C-CH2-C-C-CH2-C-CH2-C-C-CH2-C-CH2-C-CH2-C-CH2-C-C-CH2-COOH (1) CH3-C-C-C-C-C-C-C-C-CH2-C-C-C-C-C-C-C-C-C-C		
Propanal	•••	'Y is CH3CH2OH (1)
Propanal		.'. A ю CH3CH2 С (1)
Conc Hos04 : eatalyst (1)	•••	1 2012013
Conc Hos04 : eatalyst (1)	•••	Propanal Nagent: according 201207
CONC H2SO4: eatalyst (1) [7 Total] (b) CH2CH2CH2-C-COOH (1) CH3-CH2-C-CH2COOH (1) CH2 B CH3 C H H GH3 C CH2 CH2 CH2 CH2 COOH (1) CH3-C-C-CH2COOH (1) [4 marks] (c) -oCH2-C-2·1-2·6 (1) CH2-C-2·1-2·6 (1) Total] (d) 3269 om : OH alcohol (1) (d) 3269 om : OH alcohol (1)	••••	> Y reagent: NaBH4 (1)
(b) $CH_3CH_2CH_2-\dot{C}-cooH$ (1) $CH_3-cH_2-\dot{C}-cH_2cooH$ (1) CH_3 C CH_3 C CH_3	•	conc H2SO4: eatalyst (1) [7 Total]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(b)	CH3CH2CH2-C-COOH (1) CH3-CH2-C-CH2COOH (1)
$(c) - 0 cH_{3} = \frac{3 \cdot 1 - 3 \cdot 9}{3 \cdot 1 - 3 \cdot 9} $ $(c) - 0 cH_{3} = \frac{3 \cdot 1 - 3 \cdot 9}{2 \cdot 1 - 2 \cdot 6} $ $(d) \frac{3 \cdot 269}{3 \cdot 1} = \frac{2 \cdot 1 - 2 \cdot 6}{3 \cdot 1} $ $(d) \frac{3 \cdot 269}{3 \cdot 1} = \frac{3 \cdot 1 - 3 \cdot 9}{2 \cdot 1 - 2 \cdot 6} $ $(d) \frac{3 \cdot 269}{3 \cdot 1} = \frac{3 \cdot 1 - 3 \cdot 9}{2 \cdot 1 - 2 \cdot 6} $ $(e) \frac{3 \cdot 1 - 3 \cdot 9}{3 \cdot 1 - 3 \cdot 9} $ $(f) \frac{3 \cdot 1 - 3 \cdot 9}{3 \cdot 1 - 2 \cdot 6} $ $(g) \frac{3 \cdot 1 - 3 \cdot 9}{3 \cdot 1 - 2 \cdot 6} $ $(g) 3 \cdot 1 - 3 $	••••	· · · · · · · · · · · · · · · · · · ·
(c) -oct 3.1-3.9 (1) -cHc- 2.1-2.6 (1) a: quartet (1) 3 adjacent H (1) b: triplet (1) 2 adjacent H (1) [6 marks] (d) 3269 cm ⁻¹ : OH alcohol (1)	••••	
-cH ₂ -c- $2 \cdot 1 - 2 \cdot 6$ (1) a: quartet (1) 3 adjacent H (1) b: triplet (1) 2 adjacent H (1) [6 marks (d) 3269 cm^{-1} : OH alcohol (1) - G is H \times H (1) [2 marks	••••	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	 (c)	-004 - 3.1 - 3.9 (1)
a: quartet (1) 3 adjacent H (1) b: triplet (1) 2 adjacent H (1) [6 marks (d) 3269 cm ⁻¹ : OH alcohol (1) - Gr is H X H (1) [2 marks		
[6 marks] (d) 3269 cm ⁻¹ : OH alcohol (1) - Gr is H X X (1) [2 marks]		a: quartet (1) 3 adjacent H (1)
[6 marks] (d) 3269 cm ⁻¹ : OH alcohol (1) - Gr is H X X (1) [2 marks]	••••	b: triplet () 2 adjacent H ()
- G is H (1) [2 marks	••••	[6 marks
- Gris HXXIII (1) [2 marks		
- Gris HXXH (1) [2 marks	(d)	3269 cm OH alcohol (1)
		HO HO (1) [2 marks www.theallpapers.com

<u>a)</u>		(1) (1) (1) (1) (1) (1)
		+ / :NH2 \
•••••••	<i>U</i>	$H_3CH_2 - Br \rightarrow CH_3CH_2 - N_T + N_T$
**********	(1) (1) H M4 (1)
		<u> </u>
	. (M
	Furth	er reaction/substitution / formation of II /III amines et
	use	an excess of NH3 (1)
		(6 marks)
)) repels nucleophiles (such as NH3) (1)
,	<u> </u>	CHN03(1) NO2 5-1460 NH2
······································	0	\rightarrow
		CH2504(1) {2 (1)
	•••••	
		$20-60^{\circ}C(1)J$ (5 marks)
		5-may 117
	••••••	
7	(a)	allow SN1
	()	penalise:Br instead of NH ₃ removing H for M4
		not contamination with <i>other amines</i> (this is in the question), not diamines
	(b)	allow because NH ₃ is a nucleophile or benzene is (only) attacked by electrophiles
	(-)	or C-Br bond (in bromobenzene) is stronger/less polar or Br lp delocalized
	(b)	HNO ₃ /H ₂ SO ₄ without either conc scores (1) allow 20 – 60° for (1) (any 2 ex 3)
		allow name or structure of nitrobenzene
		other reducing agents: Fe or Sn with HCl (conc or dil or neither)
		not conc H ₂ SO ₄ or conc HNO ₃
		allow Ni/H ₂
		Not NaBH ₄ or LiAlH ₄

General Organic points for CHM4

Deurly arrows must show movement of a pair of electrons i.e. from bond to atom or from lp to atom/space e.e. H₃N: > C - Br OR H₃N: \ C - Br H

enalize sticks (i.e. -c-) once per paper.

HO-C-R or R-C-OH or -NH2 \times H

OH-C-R or R-C-HO

Penalize once per paper

allow CH3- or -CH3 or CH3 or CH3

or H3C-