

General Certificate of Education

Chemistry 6421

CHM4 Further Physical and Organic Chemistry

Mark Scheme

2006 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

CHM4

SECTION A

Question 1

(a)	exp 2	4.0×10^{-3}	1
	exp 3	0.45×10^{-5}	1
	exp 4	9.0×10^{-3}	1
(b)	$\overline{(3.0 \text{ x})}$	$\frac{1.8 \times 10^{-5}}{10^{-3})^2 (1.0 \times 10^{-3})}$	1
	2000		1
	mol ⁻² c	$m^{6} s^{-1}$	1

Total 6

1

1

Question 2

(a)	(i)	$[\mathrm{H}^{+}][\mathrm{OH}^{-}]$	1
		- log [H ⁺]	1

(ii)
$$[H^+] = [OH^-]$$
 1
(iii) $(2.0 \times 10^{-3}) \times 0.5 = 1.0 \times 10^{-3}$ 1

(iv)
$$[H+] = \frac{4.02 \times 10^{-14}}{1.0 \times 10^{-3}}$$
 (= 4.02 x 10⁻¹¹) 1

(b) (i)
$$Ka = \frac{[H+][CH3CH2COO-]}{[CH3CH2COOH]}$$
 1

$$= \frac{[H+]}{[CH3CH2COOH]}$$
¹

$$[H+] = \sqrt{(1.35 \times 10^{-5}) \times 0.125} \qquad (= 1.30 \times 10^{-3})$$

$$pH = 2.89$$
 1

(c) (i)
$$(50.0 \times 10^{-3}) \times 0.125 = 6.25 \times 10^{-3}$$

(ii) $(6.25 \times 10^{-3}) - (1.0 \times 10^{-3}) = 5.25 \times 10^{-3}$

(iii) mol salt formed =
$$1.0 \times 10^{-3}$$

$$(H^{+}) = Ka x \qquad \frac{[CH_{3}CH_{2}COOH]}{[CH_{3}CH_{2}COO^{-})} \qquad 1$$

=
$$(1.35 \times 10^{-5}) \times \frac{(5.25 \times 10^{-3}) / V}{(1.0 \times 10^{-3}) / V}$$
 (= 7.088 x 10⁻⁵) 1

$$pH = 4.15$$
 1

Total 16

Question 3

(a)	(i)	$C + 3D \longrightarrow 2A + B$	1
	(ii)	mol dm ⁻³	1
	(iii)	(forward reaction is) exothermic or more products formed	1
(b)	(i)	for N_2O_4 Mr = 92.0	1
		$Mol = \frac{36.8}{92.0} = 0.400$	1
	(ii)	mol N ₂ O ₄ reacted = $0.400 - 0.180 = 0.220$	1
		mol NO ₂ formed = 0.440	1
	(iii)	Kc = $\frac{(NO_2)^2}{(N_2O_4)}$ = $\frac{(0.44/16)^2}{(N_2O_4)}$	1
		$\begin{array}{l} (0.18/16) \\ = 0.067 \end{array}$	1 1
	(iv)	move to NO ₂ / to right / forwards	1
		none	1
			Total 12

Question 4

(a) nucleophilic addition

1

Question 5

(a)	dimethylamine		1
(b)	nucleophilic substitution M_1	$_{\rm H}$ M ₃	1
	H_3C-NH_2 H_3C M_2 M_2	$ H_3C \xrightarrow{+} N \xrightarrow{-} CH_3 \\ H M_4 $	
		$\begin{pmatrix} \bullet \bullet \\ CH_3 - NH_2 \end{pmatrix}$	4
(c)	quaternary ammonium salt		1
	(cationic) surfactant / bactericide / deter hair conditioner	gent / fabric softener or conditioner/	1
(d)	H ₃ C-C ^O _N -H		
	CH ₃ - +		1
	$CH_3COO CH_3NH_3$ (allow CH_2COOH or CH_2COO NH_+)		1
		Tot	al 10:
Ques	tion 6		
(a)	polyamide or nylon (2,4) (allow nylon without numbers but if nun	ibers are present they must be correct)	1
	condensation		1
(b)	H ₃ N-CH ₂ -COO		1
(c)	ionic bonding in aminoethanoic acid	(can only score if includes that	1
	stronger attractions than Hydrogen bonding in hydroxyethanoic	(e.g. stronger Hydrogen bonding in aminoethanoic acid scores 0)	1

bonding in hydroxyethanoic (mention of electrostatic forces

Total 5

between molecules scores 0)

www.theallpapers.com

SECTION B

Question 7

(a)	ethyl benzene	1
	chloroethane or bromoethane (or ethene and hydrogen chloride/bromide)	1
	aluminium chloride/bromide or iron(III) chloride /bromide or iron + chorine/bromine	1
	$CH_3CH_2Cl + AlCl_3 \rightarrow CH_3CH_2^+ + AlCl_4^-$	1
(b)	electrophilic substitution	1
	$\begin{array}{c} & & & & & & M2 \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ $	3
		1
	CH_3CH_2COCl / propanoyl chloride or $(CH_3CH_2CO)_2O$ / propanoic anhydride	1
	NaBH ₄ or LiAlH ₄ or H ₂ /Ni (not Sn/Fe with HCl)	1
		Total 11
Quest	tion 8	

(a) (i) 3 peaks or shown in a list 1 m/z = 126, 128 and 130 (56 + 70/72/74) (all 3 scores 2) 2 (if 56 wrong allow (x + 70/72/74) for 1 (x cannot be zero) (any two scores 1)

(ii)

allow wrong structure for structure dot can be anywhere

(b)	(i)	optical <u>equal</u> mixture of enantiomers (optically) inactive or effects cancel		1 1 1	
		plane polarised light rotated in opposite/different	use stereospecific reagent (QoL)) 1	
		directions (QoL)	reacts with one isomer only		
	(ii)	carbocation planar - (<i>must refer to carbocation or</i> attack from either side equally likely – / <i>intermediate</i>)	intermediate) (must refer to carbocation	1 1 1	
				7 1	max
(c)	(i)	2 peaks (if 4 peaks allow splitting only,)	1	
		ratio 6:2 or 3:1		1	
		doublet (6 or 3)		1	
		quartet (2 or 1)		1	
	(ii)	$ S \qquad \begin{array}{c} Cl \\ H_3C - C - C - C H_2CH_3 \end{array} $			
		Cl		1	
		T CH ₃			
		$H_3C - C - CH_2Cl$			
		Ċl		1	
				Total 19	