

Mark scheme January 2004

GCE

Chemistry

Unit CHM4

Copyright © 2004 AQA and its licensors. All rights reserved.

SECTION A

Answer all questions in the spaces provided.

1 (a) The following data were obtained in a series of experiments on the rate of the reaction between compounds A and B at a constant temperature.

Experiment	Initial concentration of A/moldm ⁻³	Initial concentration of B/mol dm ⁻³	Initial rate/moldm ⁻³ s ⁻¹
1	0.12	0.15	0.32×10^{-3}
2	0.36	0.15	2.88×10^{-3}
3	0.72	0.30	11.52×10^{-3}

(i)	Deduce the order	of reaction wit	•	A .		
		•••••••••••••••••••••••••••••••••••••••			***************************************	,
(ii)	Deduce the order	of reaction witl	h respect to l	В.	•••••	······································
		0	(1)			
	· · · · · · · · · · · · · · · · · · ·				, o o o o o o o o o o o o o o o o o o o	*****************
		******************				() marks

(b) The following data were obtained in a series of experiments on the rate of the reaction between NO and O₂ at a constant temperature.

Experiment	Initial concentration of NO/mol dm ⁻³	Initial concentration of O ₂ /mol dm ⁻³	Initial rate/moldm ⁻³ s ⁻¹
4	5.0×10^{-2}	2.0×10^{-2}	6.5 × 10 ⁻⁴
5	6.5×10^{-2}	3.4×10^{-2}	To be calculated

The rate equation for this reaction is

$$rate = k[NO]^2[O_2]$$

(i) Use the data from experiment 4 to calculate a value for the rate constant, k, at this temperature, and state its units.

$Value\ of\ k\$	k = rate	$= 6.5 \times 10^{-1}$.4	= 13
, <i>asset</i> of 10 m	[NO] [0,]	(5.0 × 10 ⁻²)2	(2-0×10 ⁻²)	**********************
***************************************	(1)	4	•••••••••••••••••••••••••••••••••••••••	(1)
Units of k	mol ⁻² dm ⁶	-T S		•••••••••••••••••••••••••••••••••••••••
•	(1)			

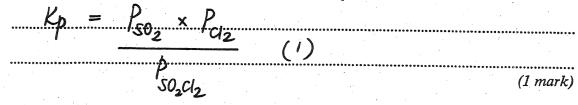
(ii) Calculate a value for the initial rate in experiment 5.

rate =
$$13(6.5 \times 10^{-2})^2(3.4 \times 10^{-2})$$

= 1.9×10^{-3} (mol dm⁻³ s⁻¹)

(b) If k wrong, the mark in (ii) may be gained conseq for their $k \times 1.437 \times 10^{-4}$

6


TURN OVER FOR THE NEXT QUESTION

2 At high temperatures, SO₂Cl₂ dissociates according to the following equation.

$$SO_2Cl_2(g) \implies SO_2(g) + Cl_2(g) \qquad \Delta H^{\bullet} = +93 \text{ kJ mol}^{-1}$$

When 1.00 mol of SO₂Cl₂ dissociates, the equilibrium mixture contains 0.75 mol of Cl₂ at 673 K and a total pressure of 125 kPa.

(a) Write an expression for the equilibrium constant, K_p , for this reaction.

(b) Calculate the total number of moles of gas present in the equilibrium mixture.

0.25	+ 0.7	5 + 0.75	1.75	
(1)			(1)	
		*	 	(2 marks)

(c) (i) Write a general expression for the partial pressure of a gas in a mixture of gases in terms of the total pressure.

(ii) Calculate the partial pressure of SO₂Cl₂ and the partial pressure of Cl₂ in the equilibrium mixture.

Partial pressure of
$$SO_2Cl_2$$
 $125 \times \frac{0.25}{1.75} = 17.9$ $125 \times \frac{0.25}{1.75} = 17.9$ $125 \times \frac{0.75}{1.75} = 53.6$ $125 \times \frac{0.75}{1.75} = 53.6$

(d) Calculate a value for the equilibrium constant, K_p , for this reaction and give its units.

$$kp = \frac{53.6 \times 53.6}{17.9} = 161 \text{ kPa}$$

(1)
(1)
(3 marks)

(e)	State the effect Explain your a	t, if any, o	of an increa	se in temperatu	re on the value of $K_{\rm p}$ for	or this reaction.
	Effect on K_p	• • • • • • • • • • • • • • • • • • • •	in crea	ue (1)	***************************************	*************************
	Explanation	incre	ase 7	sends	equilibrium	in
1	400000000000000000000000000000000000000	endo	otherm	ic direc	tion (1)	
				osmonoumo		(2 marks)
(f)	State the effect reaction.		of an increa		pressure on the value	of K_p for this
. 416						(1 mark)

	•		
(a)	If K _p has [] lose mark in (a) but allow full marks in (d)		
	If K _p wrong/upside down etc, allow max 2 in (d) for substitution of numbers [1] and consequential units [1]		
(b)	Mark for moles of SO ₂ Cl ₂ can be scored in part (c)(ii) if not gained in (b)		
	1.75 gets [2]		
	If moles of SO ₂ Cl ₂ = 1, this is a Chemical Error, hence a 2 mark penalty		
• If total moles given in (b) = 1.75, this scores [2] in (b); but if the no moles o $SO_2Cl_2 = 1$ in (c)(ii), lose both marks in (c)(ii) for pp of $SO_2Cl_2 = (1/1.75) \times 10^{-2}$ i.e. the 2 mark penalty is in (c)(ii).			
	• If total moles given in (b) = 2.5, score zero in (b), but can gain full marks in (c)(ii) consequentially, i.e. the 2 mark penalty is in (b).		
	• If moles of SO ₂ Cl ₂ = 1 and total in (b) does not equal 2.5, still lose both in (b) but can get all 4 conseq in (c)(ii) for 1/x etc and 0.75/x etc		
(c)	(i) Allow "Total pressure = sum of partial pressures" for [1] or $p_A = x_A \times p_{tot}$		
	(ii) First mark is for mole fraction.		
	If either number in either mole fraction is not consequential on (b), then lose both marks for that partial p.		
(d)	If pCl ₂ is not equal to pSO ₂ or any number used in K _p is not conseq on (c)(ii), allow units only		
	SIG FIGS; must be 3 sig figs in (b) but then allow 2 sig figs in (c) and (d); (ignore extra figs) but penalise incorrect rounding		

If effect wrong, no marks for explanation.

If effect missing, e.g. answer states "equm shifts to right", mark on.

In the explanation, the word "endothermic" (or its equivalent) is essential.

(e)

Penalise 2sig figs once in the question but pH must also be to 2 dp Penalise missing [] once in question.

The pH of a 0.120 mol dm⁻³ solution of the weak monoprotic acid, HX, is 2.56 at 298 K. 3

Write an expression for the term pH.

 $pH = -\log \left[H^{+}\right] \qquad (1)$

Write an expression for the dissociation constant, K_a , for the weak acid HX and calculate its value at 298 K.

Expression for K_a $K_a = [H^+][X^-]$ (1) [HX]

Calculation $PH = 2.56 \cdot [H + 7] = 2.75 \times 10^{-3} (1)$ $K_{a} = [H^{\dagger}]^{2} = (2.75 \times 10^{-3})^{2} = 6.32 \times 10^{-5} \pmod{4m^{-3}}$ [HX] 0·12 (1)

(1)

(i) Write an expression for the ionic product of water, K_w , and give its value at 298 K. (b) Expression for $K_{\rm w}$ $K_{\rm W} = [H^+][OH^-]$ (1) Value of $K_{\rm w}$ $(1 \cdot O \times) 10^{-14} (\text{mol}^2 \text{dm}^{-6})$ (1)

(ii) Hence, calculate the pH of a 0.0450 mol dm⁻³ solution of sodium hydroxide at

In (a) (ii):

depending on approximations made, values of $K_a = 10^{-5} \times$

using [HX] = 0.12

6.30 - 6.32

using [HX] = 0.12 - 2.75...

6.45 - 6.47

using 2.8 and [HX] = 0.12

6.53

using 2.8 and [HX] = 0.12 - 2.8

6.69

Upside down Ka

- (c) A titration curve is plotted showing the change in pH as a 0.0450 mol dm⁻³ solution of sodium hydroxide is added to 25.0 cm³ of a solution of ethanedioic acid, H₂C₂O₄ The titration curve obtained has two equivalence points (end points).
 - (i) Write an equation for the reaction which is completed at the first equivalence point. $H_2C_2O_4 + OH^- \longrightarrow HC_2O_4 + H_2O$ (1)
 - (ii) When the second equivalence point is reached, a total of 41.6 cm³ of 0.0450 mol dm⁻³ sodium hydroxide has been added. Calculate the concentration of the ethanedioic acid solution.

mol
$$0H^{-} = (41.6 \times 10^{-3}) \times 0.0450^{(1)} = 1.87 \times 10^{-3}$$

: mol $H_2C_2O_4 = 9.36 \times 10^{-4}$ (1)
 $[H_2C_2O_4] = 9.36 \times 10^{-4} \times \frac{10^3}{25}$
 $= 0.0374$ (1)

if moles of $H_2C_2O_4$ not equal to half moles of OH , no further marks gained if mol OH = 1.9×10^{-3} ; hence mol $H_2C_2O_4 = 9.5 \times 10^{-4}$; $[H_2C_2O_4] = 0.038$ (4 marks)

- (d) Draw the structure of the organic product formed in each case when, in the presence of a small amount of concentrated sulphuric acid, ethanedioic acid reacts with
 - (i) an excess of methanol,

$$CH_3O$$

$$CH_3$$

$$CH_3$$

$$(1)$$

(ii) an equimolar amount of ethane-1,2-diol.

- (d) (i) must be diester allow CH₃OOCCOOCH₃ or CH₃O₂CCO₂CH₃ and similarly in (ii)
 - (ii) must be 1:1 proportion

4 (a) Consider the following amino acid.

$$\begin{array}{c} H \\ \stackrel{\mid}{\text{H}_2}\text{N-C-COOH} \\ \stackrel{\mid}{\text{CH(CH}_3)_2} \end{array}$$

(i) Draw the structure of the amino acid species present in a solution at pH 12.

ignore Nat unless covalently bonded. H₂N
$$-c$$
 $-c$ coo (1) CH $(cH_3)_2$

(ii) Draw the structure of the dipeptide formed from two molecules of this amino acid.

must be dipeptide, not polymer nor anhydride
allow -CONH- or -COHN-

$$H_2N - C - C - N - C - COOH$$
 (1)

 $CH(CH_3)_2$ $CH(CH_3)_2$ allow zwitterion

(iii) Protein chains are often arranged in the shape of a helix. Name the type of interaction that is responsible for holding the protein chain in this shape.

allow with dipole-dipole or v derWaals, but not dipole-dipole etc alone

(3 marks)

- (b) Consider the hydrocarbon G, (CH₃)₂C=CHCH₃, which can be polymerised.
 - (i) Name the type of polymerisation involved and draw the repeating unit of the polymer.

Type of polymerisation addition(al)(1)

(not multiples) CH3 H must show linking bonds
$$-c-c-c$$
 (1) CH3 CH3

allow n

(ii) Draw the structure of an isomer of **G** which shows geometrical isomerism. double bond must be shown

$$CH_3 CH = CH CH_2 CH_3 \qquad (1)$$

$$C_2H_5$$

(iii) Draw the structure of an isomer of G which does not react with bromine water.

allow
$$H_2$$
 H_2 H_2 but not H_2 H_2 H_2 H_2

(4 marks)

(a)	responsible for this absorption.	ify the bond
	C=O (1) or "carbonyl"	
•		(1 mark)
(b)	The mass spectrum of Q contains two molecular ion peaks at $m/z = 106$ and It also has a major peak at $m/z = 43$. (i) Suggest why there are two molecular ion peaks.	d 37 Cl with
	(i) Suggest why there are two molecular ion peaks. Word isotope— Cl has (2) isotopes (1) coment isotope	es.
	(ii) A fragment ion produced from Q has $m/z = 43$ and contains ator different elements. Identify this fragment ion and write an equation formation from the molecular ion of Q. Fragment ion CH3-C=O must be an ion	showing its
	Equation C4H7U0 + -> CH3CO + C2H	4Cl° (1)
allov	$C_2H_3O^+$ or any form of it (i.e. CH_2CHO^+ or CH_2COH^+)	(3 marks)
(c)	in equation, be generous with position of $+$ or \cdot The proton n.m.r. spectrum of \mathbf{Q} was recorded.	
	(i) Suggest a suitable solvent for use in recording this spectrum of Q.	
	CDC13 or CC14 (1) or D20, C6	D6
	(ii) Give the formula of the standard reference compound used in record n.m.r. spectra.	
	$Si(CH_3)$ (1) or SiC_4H_{12}	
	74	(2 marks)
	ii) must have 3 different elements, i.e. not C ₃ H ₇ ⁺ but allow	

(d) The proton n.m.r. spectrum of **Q** shows three peaks. Complete the table below to show the number of adjacent, non-equivalent protons responsible for the splitting pattern.

	Peak 1	Peak 2	Peak 3
Integration value	3	3	1
Splitting pattern	doublet	singlet	quartet
Number of adjacent, non-equivalent protons	1	0	3

 $(1) \qquad (1 mark)$

(e) Using the information in parts (a), (b) and (d), deduce the structure of compound Q.

(I mark)

(f) A structural isomer of Q reacts with cold water to produce misty fumes. Suggest a structure for this isomer.

CH₃ CH₂ CH₂-
$$c_{cl}^{=0}$$
 or (CH₃)₂ CH COCL (1)
or CH₃ CH₂ CH₂ COCL

(I mark)

Consider the following pair of isomers.

C

(i)	Name	compound	C.
-----	------	----------	----

-		
L		1,1
Dmhul	methanoate	(()
אוטאאי		
1 1 1 1 1		

Identify a reagent which could be used in a test-tube reaction to distinguish between C and D. In each case, state what you would observe.

Observation with C 10 Naction (1)

Observation with D & Hervescence (1)

Consider the following pair of isomers. (b)

Identify a reagent which could be used in a test-tube reaction to distinguish between E and F. In each case, state what you would observe.

Reagent Tollens' or Fehling's (1)

Observation with E NO Neartion (1)

Observation with E Silver mirror or red pot (1)

(4 marks)

www.theallpapers.com

(c) Draw the structure of the chain isomer of F which shows optical isomerism.

$$CH_3CH_2-C-CHO$$
 (1)

()u	6
٩	/u	U

(a)	(i)	not propanyl
` '		F P

- A wrong reagent or no reagent scores zero
- An incomplete reagent such as silver nitrate for Tollens, or potassium dichromate loses the reagent mark, but can get both observation marks.
- penalise observations which just say *colour change occurs* or only state starting colour.

(ii) for C and D NOT Tollens

Test	an identified (hydrogen) carbonate	acidified K ₂ Cr ₂ O ₇	acidified KMnO ₄	correct metal	UI or stated indicator	PCl ₅
observation with C	no reaction	goes green	goes colourless	no reaction	no change	no reaction
observation with D	bubbles or CO ₂	no change	no change	bubbles or H ₂	red or correct colour pH 3 - 6.9	(misty) fumes

(b) (i) pentan-2-one or 2-pentanone but not pent-2-one or pentyl

(ii) for E and F

Test	Tollens	Fehlings or Benedicts	iodoform or I ₂ /NaOH	acidified K ₂ Cr ₂ O ₇	Schiff's
observation with E	No reaction	no reaction	yellow (ppt)	no change	no reaction
observation with F	silver or mirror or grey or ppt	red or ppt not red solution	no reaction	goes green	goes pink
(c) must	he an aldebude	Allow C.H. for	CH CH 4		

(c) | must be an aldehyde. Allow C_2H_5 for CH_3CH_2 otherwise this is the only answer.

17	MARGIN BLANK
Question 7 (see also notes)	
(a) cyclohexene evolves 120 KT mol	
! (expect triene to evolve) 360 LJ moz-1 (1) or 3×120	
$360 - 208 = 152 kT (1) \frac{NOT}{150} (152 can score 2)$	
Qof L. benzene lower in energy/more stable (1) [not award if mentions	Breaking
dul to allocalization (1) [4 marks]	J
or explained	
(b)(i) phenylamine weaker (1) if wrong -no marks	
lone pair on N (less available)(1)	
delocalized into ring (1) or "explained" [3 marks]	
(ii) addition - elimination (1)	
$(C_6H_5)NH_2$ M^2 $C_6H_5 + N^2H$	
(1) MI Structure (1) M3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
N-phenyl ethanamide (1) [6 marks]	
(iii) conc HNO ₃ (1)	
conc H2SO4 (1)	
$HNO_3 + 2H_2SO_4 \rightarrow NO_2 + H_3O^4 + 2HSO_4^- (1)$	
$ \begin{array}{ccc} & & & & & \\ & & & & & \\ & & & & & \\ & & & &$	
NO ₂	
(1) MI	
(1) M2 [6 marts]	
	OCCUPATION AND CONTRACTOR AND CONTRA
iv) Deptide amide (1)	
Na OH (ag) (1) NOT just 40 [2 marks]	
HCl conc or dil or neither	
H2SO4 dil NOT CONC www.theallpapers.com	

Qu7 notes to accompany mark scheme

Qu/	11000	to accompany mark scheme	
(a)		360 or 3×120 or in words [1];	
		152 NOT 150 [1]; (152 can get first two marks)	
-	1	Qof L benzene more stable but not award if ΔH values used to	
	1	say that more energy is required by benzene for hydrogenation	
		compared with the triene or if benzene is only compared with	
	1	cyclohexene [1];	
	1		4
(1-)	T	delocalisation or explained [1]	+-
(b)	(i)	phenylamine weaker [1] if wrong no marks	
		lone pair or electrons on N [1]	3
	(ii)	electrons delocalised into the ring or explained [1] N-phenylethanamide or N-phenylacetamide or acetanilide	3
	(11)	mechanism: if shown as substitution can only gain M1	
		if CH ₃ CO+ formed can only gain M1	
		lose M4 if Cl removes H ⁺	
		be lenient with structures for M1 and M2 but must be correct for M3	
		C=O alone loses M2	6
	(iii)	NO mark for name of mechanism in this part	
		if conc missing can score one for both acids (or in equation)	
-		allow two equations	
		allow $HNO_3 + H_2SO_4 \longrightarrow NO_2^+ + HSO_4^- + H_2O$	
		ignore side chain in mechanism even if wrong	
		arrow for M1 must come from inside hexagon arrow to NO ₂ ⁺ must go to N but be lenient over position of +	
		+ must not be too near to "tetrahedral" Carbon	6
		horseshoe from carbons 2-6 but don't be too harsh	0
	(iv)	reagent allow NaOH	
	\\	HCl conc or dil or neither	
		H ₂ SO ₄ dil or neither but not conc	2
		not just H ₂ O	
and to contain		ringed total at end (ma	x 21)

8 Compound Z can be formed via compounds X and Y in the three step synthesis shown below.

Identify compounds X and Y and give reagents and conditions for Steps 1 and 2.

State the type of compound of which Z is an example.

Compound Z reacts with a large excess of bromomethane to form a solid product. Draw the structure of this product and name the type of mechanism for this reaction.

(9 marks)

END OF QUESTIONS

Qu8 Replacement mark scheme

X is CF			hanonitrile or thanecarbonit		de or cyanome not etha		1
t	out contradio	ction of name	and structure	loses mark			
Y is CH	3CH2NH2 01	ethylamine o	r aminoethane	or ethanamir	ne		1
Step 1 reagent KCN not HCN or KCN/HCl					eksellinininte, gest och prinsiplerinde med under genne under sitte ett er er er en	1	
	condition (aq)/alcohol - only allow condition if reagent correct or incomplete					or incomplete	1
Step 2	reagent	H_2	LiAlH ₄	Na	Zn/Fe/Sn	Not NaBH4	1
	condition	Ni/Pt/Pd	ether	ethanol	HC1		1
Z is a a	mine or ami	inoalkane or	in named ami	ne even if inc	orrect name for	or Z	1
secondary (only award if amine correct)					1		
CH ₃ CH ₂ -	CH ₃ -N-CH ₃ CH ₃	+ (Br¯)	+ can be on 1	N or outside b	rackets as sho	wn	**************************************
nucleoph	ilic substitu	tion			erreta el terreta que producer que el terreta tente de la terreta de la composição de la composição de la comp		1
					ringed total	at end (max 9) /10)