| Surname             |  | Other | Names   |            |  |  |
|---------------------|--|-------|---------|------------|--|--|
| Centre Number       |  |       | Candida | ate Number |  |  |
| Candidate Signature |  |       |         |            |  |  |

Leave blank

General Certificate of Education June 2005 Advanced Subsidiary Examination



CHEMISTRY CHM3/W Unit 3(a) Introduction to Organic Chemistry

Wednesday 8 June 2005 Morning Session

In addition to this paper you will require: a calculator.

Time allowed: 1 hour

## **Instructions**

- Use blue or black ink or ball-point pen.
- Fill in the boxes at the top of this page.
- Answer **all** questions in **Section A** and **Section B** in the spaces provided. All working must be shown.
- Do all rough work in this book. Cross through any work you do not want marked.
- The Periodic Table/Data Sheet is provided on pages 3 and 4. Detach this perforated sheet at the start of the examination.

# **Information**

- The maximum mark for this paper is 60.
- Mark allocations are shown in brackets.
- This paper carries 25 per cent of the total marks for AS. For Advanced Level this paper carries 12½ per cent of the total marks.
- You are expected to use a calculator where appropriate.
- The following data may be required. Gas constant  $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$
- Your answers to the questions in **Section B** should be written in continuous prose, where appropriate. You will be assessed on your ability to use an appropriate form and style of writing, to organise relevant information clearly and coherently, and to use specialist vocabulary, where appropriate.

# Advice

APW/0205/CHM3/W

• You are advised to spend about 45 minutes on **Section A** and about 15 minutes on **Section B**.

|                  | For Exam     | iner's Use    |      |
|------------------|--------------|---------------|------|
| Number           | Mark         | Number        | Mark |
| 1                |              |               |      |
| 2                |              |               |      |
| 3                |              |               |      |
| 4                |              |               |      |
| 5                |              |               |      |
| 6                |              |               |      |
|                  |              |               |      |
|                  |              |               |      |
|                  |              |               |      |
|                  |              |               |      |
|                  |              |               |      |
|                  |              |               |      |
| Total<br>(Column | 1)           | <b>→</b>      |      |
| Total<br>(Column | 2)           | $\rightarrow$ |      |
| TOTAL            |              |               |      |
| Examine          | r's Initials |               |      |

# **SECTION A**

Answer all questions in the spaces provided.

| 1 | The | petrol | is separated into fractions by fractional distillation. fraction ( $C_4$ to $C_{12}$ ) is burned in internal combustion engines and the naphtha $C_7$ to $C_{14}$ ) is cracked. |
|---|-----|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | (a) |        | oleum is separated into fractions when it is heated and the vapour mixture is passed a fractionating column.                                                                    |
|   |     | (i)    | Explain what is meant by the term <i>fraction</i> as applied to fractional distillation.                                                                                        |
|   |     |        |                                                                                                                                                                                 |
|   |     | (ii)   | State a property of the molecules in petroleum which allows the mixture to be separated into fractions.                                                                         |
|   |     |        |                                                                                                                                                                                 |
|   |     | (iii)  | Describe the temperature gradient in the column.                                                                                                                                |
|   |     |        | (3 marks)                                                                                                                                                                       |
|   | (b) | The    | fractions from petroleum contain alkane hydrocarbons.                                                                                                                           |
|   |     | (i)    | Write an equation for the incomplete combustion of the alkane $C_8H_{18}$ to produce carbon monoxide and water only.                                                            |
|   |     |        |                                                                                                                                                                                 |
|   |     | (ii)   | One isomer of $C_8H_{18}$ is 2,2,3-trimethylpentane. Draw the structure of this isomer.                                                                                         |
|   |     |        |                                                                                                                                                                                 |

(2 marks)

# The Periodic Table of the Elements

The atomic numbers and approximate relative atomic masses shown in the table are for use in the examination unless stated otherwise in an individual question.

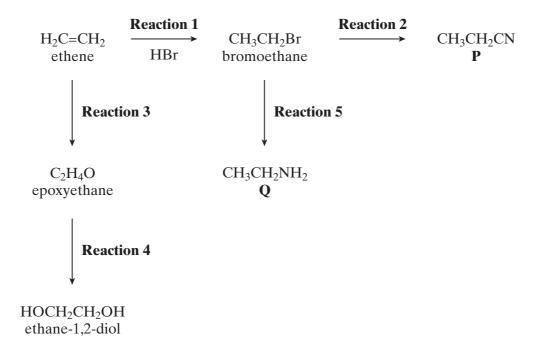
| -                     | =                  |                    |                    |                      |                   |                    |                    |                   |                 |                    |                    | =                  | ≥                  | >                                     | 5                  | <b>=</b>           | 0                               |   |
|-----------------------|--------------------|--------------------|--------------------|----------------------|-------------------|--------------------|--------------------|-------------------|-----------------|--------------------|--------------------|--------------------|--------------------|---------------------------------------|--------------------|--------------------|---------------------------------|---|
| 1.0 <b>T</b> Hydrogen |                    |                    | Key                |                      |                   |                    |                    |                   |                 |                    |                    |                    |                    |                                       |                    |                    | 4.0<br><b>He</b><br>Helium<br>2 |   |
| 6.9<br>L              | 9.0<br><b>Be</b>   |                    | relative a         | relative atomic mass |                   | 6.9<br><b>Li</b>   |                    |                   |                 |                    |                    | 10.8<br><b>B</b>   | 12.0<br><b>C</b>   | 14.0<br><b>Z</b>                      | 0.9                | 19.0<br><b>F</b>   | 20.2<br><b>Ne</b>               |   |
| Lithium<br>3          | Beryllium<br>4     |                    | atomic number      | mber —               |                   | Lithium<br>3       |                    |                   |                 |                    |                    | Boron<br>5         | Carbon<br>6        | Carbon Nitrogen 6 7                   | Oxygen<br>8        | Fluorine           | Neon<br>10                      |   |
| 23.0<br>Na            | 24.3<br><b>Mg</b>  | 1                  |                    |                      |                   |                    |                    |                   |                 |                    |                    | 27.0<br><b>Al</b>  | 28.1<br><b>Si</b>  | 31.0<br><b>P</b>                      | 32.1<br><b>S</b>   | ت <sub>2</sub> 2   | 39.9<br><b>Ar</b>               |   |
| Sodium<br>11          | Magnesium<br>12    |                    |                    |                      |                   |                    |                    |                   |                 |                    |                    | Aluminium<br>13    | Silicon<br>14      | Phosphorus<br>15                      | Sulphur<br>16      | Chlorine<br>7      | Argon<br>18                     |   |
| 39.1<br>7             | 40.1<br><b>Ca</b>  | 45.0<br><b>Sc</b>  | 47.9<br><b>Ti</b>  | 50.9<br><b>V</b>     | 52.0<br><b>Ç</b>  | 54.9<br><b>Mn</b>  | 55.8<br><b>Fe</b>  | 8.0<br>6.0        |                 |                    |                    | 69.7<br><b>Ga</b>  | 72.6<br><b>Ge</b>  | 74.9<br><b>As</b>                     | 79.0<br><b>Se</b>  | 9.9<br><b>Br</b>   | 83.8<br><b>Kr</b>               | 3 |
| Potassium<br>19       | Calcium<br>20      | Scandium<br>21     | Titanium<br>22     | Vanadium<br>23       |                   | Manganese<br>25    | lron 2.            | Cobalt<br>7       | Nickel<br>28    |                    | Zinc<br>30         | Gallium<br>31      | Germanium<br>32    | Germanium Arsenic Selenium I 32 34 38 | Selenium<br>34     | 3romine<br>5       | Krypton<br>36                   |   |
| 85.5<br>Rb            | 87.6<br><b>Sr</b>  | 88.9<br><b>\</b>   | 91.2<br><b>Zr</b>  | 92.9<br><b>Nb</b>    | 95.9<br><b>Mo</b> | 98.9<br><b>Tc</b>  | 101.1<br><b>Ru</b> | 02.9<br><b>Rh</b> |                 | 107.9<br><b>Ag</b> | 112.4<br><b>Cd</b> | 114.8<br><b>In</b> | 118.7<br><b>Sn</b> | 121.8<br><b>Sb</b>                    | 127.6<br><b>Te</b> | 56.9<br>-          | 131.3<br><b>Xe</b>              |   |
| Rubidium<br>37        | _                  | Yttrium<br>39      | _                  | Niobium<br>41        | Molybdenum<br>42  |                    | Ruthenium<br>44    | Rhodium<br>5      | Palladium<br>46 |                    | Cadmium<br>48      | Indium<br>49       | Tin<br>50          | Antimony 51                           | Tellurium<br>52    | lodine<br>3        | Xenon<br>54                     |   |
| 132.9<br>Cs           | 137.3<br><b>Ba</b> | 138.9<br><b>La</b> | 178.5<br><b>Hf</b> | 180.9<br><b>Ta</b>   | 183.9<br><b>W</b> | 186.2<br><b>Re</b> | 190.2<br><b>Os</b> | 92.2<br><b>Ir</b> | 195.1 <b>Pt</b> | 197.0<br><b>Au</b> | 200.6<br><b>Hg</b> | 204.4<br><b>TI</b> | 207.2<br><b>Pb</b> | 209.0<br><b>Bi</b>                    | .10.0<br><b>8</b>  | 210.0<br><b>At</b> | 222.0<br><b>Rn</b>              |   |
| Caesium<br>55         | _                  | Lanthanum<br>57 *  | Hafnium<br>72      | Tantalum<br>73       | Tungsten<br>74    | _                  | Osmium<br>76       | Iridium<br>7      |                 |                    | Mercury<br>80      |                    |                    | Bismuth<br>83                         | Polonium<br>34     | Astatine<br>85     | Radon<br>86                     |   |
| 223.0<br><b>Fr</b>    | 226.0<br><b>Ra</b> | 227<br><b>Ac</b>   |                    |                      |                   |                    |                    |                   |                 |                    |                    |                    |                    |                                       |                    |                    |                                 |   |
| Francium 87           | Radium<br>88       | ĕ 68               |                    |                      |                   |                    |                    |                   |                 |                    |                    | _                  |                    |                                       |                    |                    |                                 |   |

| 140.1<br><b>Ce</b> | 40.1         140.9         144.2           Ce         Pr         Nd | 144.2<br><b>Nd</b> | و.<br>ع                                | 150.4<br><b>Sm</b> | 150.4 152.0 <b>Sm Eu</b> | 157.3<br><b>Gd</b>       |           | 162.5<br><b>Dy</b> | 164.9<br><b>Ho</b> | 167.3<br><b>Er</b> | 168.9<br><b>Tm</b> | 173.0<br><b>Yb</b> | 175.0<br><b>Lu</b> |
|--------------------|---------------------------------------------------------------------|--------------------|----------------------------------------|--------------------|--------------------------|--------------------------|-----------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Cerium<br>58       | Praseodymium Neodymium Pron 59 60 61                                | Neodymium<br>60    | Promethium<br>61                       | Samarium<br>62     | Europium<br>63           | Gadolinium Terbium 64 65 |           | Dysprosium<br>66   | Holmium<br>37      | Erbium<br>68       | Thulium<br>69      | Ytterbium 70       | Lutetium<br>71     |
| 232.0              | 231.0                                                               | 238.0              | 232.0 231.0 238.0 237.0 239.1 243.1 24 | 239.1              | 243.1                    | 47.1                     | 247.1 2   | :52.1              | (252)              | 257)               | (258)              | (259)              | (260)              |
| <b>Th</b>          | <b>Pa</b>                                                           | <b>U</b>           | <b>Th Pa U Np Pu Am</b>                | <b>Pu</b>          | <b>Am</b>                | <b>Cm</b>                | <b>BK</b> | <b>Cf</b>          | <b>Es</b>          | <b>Fm</b>          | <b>Md</b>          | <b>No</b>          | <b>Lr</b>          |
| Thorium            | Protactinium 91                                                     | Uranium            | Neptunium                              | Plutonium          | Americium                | Curium                   | Berkelium | Californium        | Einsteinium        | Fermium            | Mendelevium        | Nobelium           | Lawrencium         |
| 90                 |                                                                     | 92                 | 93                                     | 94                 | 95                       | 3                        | 97        | 98                 | 99                 | 00                 | 101                | 102                | 103                |

**Table 1** Proton n.m.r chemical shift data

| Type of proton | δ/ppm   |
|----------------|---------|
| $RCH_3$        | 0.7–1.2 |
| $R_2CH_2$      | 1.2–1.4 |
| $R_3$ CH       | 1.4–1.6 |
| $RCOCH_3$      | 2.1–2.6 |
| $ROCH_3$       | 3.1–3.9 |
| $RCOOCH_3$     | 3.7–4.1 |
| ROH            | 0.5-5.0 |

**Table 2** Infra-red absorption data


| Bond           | Wavenumber/cm <sup>-1</sup> |
|----------------|-----------------------------|
| С—Н            | 2850-3300                   |
| С—С            | 750–1100                    |
| C=C            | 1620–1680                   |
| C=O            | 1680–1750                   |
| С—О            | 1000-1300                   |
| O—H (alcohols) | 3230–3550                   |
| O—H (acids)    | 2500–3000                   |

|      | (1 mark)                                                                                                                  |
|------|---------------------------------------------------------------------------------------------------------------------------|
| (i)  | Give the type of reactive intermediate formed during catalytic cracking.                                                  |
| (ii) | Identify a catalyst used in catalytic cracking.                                                                           |
|      | (2 marks)                                                                                                                 |
| (i)  | Give the type of reactive intermediate formed during thermal cracking.<br>State how this reactive intermediate is formed. |
|      | Reactive intermediate                                                                                                     |
|      | How intermediate is formed                                                                                                |
| (ii) | Identify the different type of hydrocarbon produced in a high percentage by the thermal cracking of alkanes.              |
| (ii) | Identify the different type of hydrocarbon produced in a high percentage by                                               |



TURN OVER FOR THE NEXT QUESTION

2 Consider the following scheme of reactions.



(a) In **Reaction 1**, ethene undergoes electrophilic addition with hydrogen bromide.

| (i) | State what is meant by the term <i>electrophile</i> . |
|-----|-------------------------------------------------------|
|     |                                                       |
|     |                                                       |

(ii) Outline a mechanism for this reaction.

(5 marks)

| (b) | Epox        | xyethane is formed from ethene in <b>Reaction 3</b> .                                               |
|-----|-------------|-----------------------------------------------------------------------------------------------------|
|     | (i)         | Identify a reagent and a catalyst for this reaction.                                                |
|     |             | Reagent                                                                                             |
|     |             | Catalyst                                                                                            |
|     | (ii)        | Draw the structure of epoxyethane.                                                                  |
|     |             |                                                                                                     |
|     |             |                                                                                                     |
|     |             |                                                                                                     |
|     |             |                                                                                                     |
|     | (iii)       | Identify a reagent which will react with epoxyethane to form ethane-1,2-diol in <b>Reaction 4</b> . |
|     |             | (4 marks)                                                                                           |
| (c) | In <b>R</b> | eactions 2 and 5, bromoethane undergoes nucleophilic substitution.                                  |
|     | (i)         | Identify a reagent for <b>Reaction 2</b> . Name the organic product, <b>P</b> .                     |
|     |             | Reagent for Reaction 2                                                                              |
|     |             | Name of product <b>P</b>                                                                            |
|     | (ii)        | Identify a reagent for <b>Reaction 5</b> . Name the organic product, <b>Q</b> .                     |
|     |             | Reagent for Reaction 5                                                                              |
|     |             | Name of product $oldsymbol{Q}$                                                                      |
|     | (iii)       | Outline a mechanism for <b>Reaction 5</b> .                                                         |
|     |             |                                                                                                     |

(8 marks)



# NO QUESTIONS APPEAR ON THIS PAGE

3 Consider the following reaction in which an alkene is formed from a haloalkane.

 $CH_3CHBrCH_2CH_3 + KOH \xrightarrow{heat} CH_3CH=CHCH_3 + KBr + H_2O$  ethanol solvent but-2-ene

(a) Name the haloalkane used in this reaction.

|  |  | (1 mark) |
|--|--|----------|

(b) Name and outline a mechanism for this reaction.

| Name of mechanism |  |
|-------------------|--|
|-------------------|--|

Mechanism

(4 marks)

(c) Another alkene, which is a structural isomer of but-2-ene, is also formed during this reaction.

| (1) | State what is meant by the term structural isomers. |
|-----|-----------------------------------------------------|
|     |                                                     |
|     |                                                     |
|     |                                                     |

(ii) Draw the structure of this other alkene.

(2 marks)

- 4 Many naturally-occurring organic compounds can be converted into other useful products.
  - (a) Glucose,  $C_6H_{12}O_6$ , can be fermented to make ethanol, which can then be dehydrated to make the unsaturated compound, ethene.

| (1)   | write an equation for the fermentation of glucose to form ethanol.                                                                                      |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |                                                                                                                                                         |
| (ii)  | Identify a catalyst for the dehydration of ethanol to form ethene.<br>Write an equation for this reaction.                                              |
|       | Catalyst                                                                                                                                                |
|       | Equation(3 marks)                                                                                                                                       |
| _     | table oils, which contain unsaturated compounds, are used to make margarine ify a catalyst and a reagent for converting a vegetable oil into margarine. |
| Catal | yst                                                                                                                                                     |
| Regar | ont                                                                                                                                                     |

(b)

(2 marks)

(c) Oleic acid can be obtained from vegetable oils. Oleic acid is an example of an unsaturated compound.

# CH<sub>3</sub>(CH<sub>2</sub>)<sub>7</sub>CH=CH(CH<sub>2</sub>)<sub>7</sub>COOH oleic acid

| (i)   | Deduce the molecular formula and the empirical formula of oleic acid.                                                                                                     |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | Molecular formula                                                                                                                                                         |
|       | Empirical formula                                                                                                                                                         |
| (ii)  | State what is meant by the term <i>unsaturated</i> .                                                                                                                      |
| (iii) | Identify a reagent for a simple chemical test to show that oleic acid is unsaturated. State what you would observe when oleic acid reacts with this reagent.  **Reagent** |
|       | Observation with oleic acid                                                                                                                                               |
|       | (5 marks)                                                                                                                                                                 |

 $\left(\frac{10}{10}\right)$ 

TURN OVER FOR THE NEXT QUESTION

### **SECTION B**

Answer the questions below in the space provided on pages 12 to 16 of this booklet.

5 Chlorination of ethane follows a free-radical substitution mechanism. This mechanism is similar to that which occurs when methane is chlorinated. The overall equation for the reaction of ethane to form chloroethane is given below.

$$C_2H_6 + Cl_2 \longrightarrow C_2H_5Cl + HCl$$

State the conditions and outline a mechanism for this reaction. Show how butane can be formed in this reaction. (5 marks)

6 Some alcohols can be oxidised to form aldehydes, which can then be oxidised further to form carboxylic acids.

Some alcohols can be oxidised to form ketones, which resist further oxidation. Other alcohols are resistant to oxidation.

- (a) Draw the structures of the **two** straight-chain isomeric alcohols with molecular formula,  $C_4H_{10}O$  (2 marks)
- (b) Draw the structures of the oxidation products obtained when the two alcohols from part (a) are oxidised separately by acidified potassium dichromate(VI).

  Write equations for any reactions which occur, using [O] to represent the oxidising agent.

  (6 marks)
- (c) Draw the structure and give the name of the alcohol with molecular formula  $C_4H_{10}O$  which is resistant to oxidation by acidified potassium dichromate(VI). (2 marks)

# **END OF QUESTIONS**

| ••••• | • • • • • • • • • • • • • • • • • • • • | •••••                                   | • • • • • • • • • • • • • • • • • • • • |
|-------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
|       |                                         |                                         |                                         |
|       |                                         |                                         |                                         |
|       |                                         |                                         |                                         |
|       |                                         |                                         |                                         |
|       |                                         |                                         |                                         |
|       |                                         |                                         |                                         |
|       |                                         |                                         |                                         |
|       |                                         |                                         |                                         |
| ••••• | • • • • • • • • • • • • • • • • • • • • | •••••                                   | • • • • • • • • • • • • • • • • • • • • |
|       |                                         |                                         |                                         |
|       |                                         |                                         |                                         |
|       |                                         |                                         |                                         |
|       |                                         |                                         |                                         |
|       |                                         |                                         |                                         |
|       |                                         |                                         |                                         |
|       |                                         |                                         |                                         |
|       |                                         |                                         |                                         |
|       |                                         |                                         |                                         |
|       |                                         |                                         |                                         |
|       |                                         |                                         |                                         |
|       |                                         |                                         |                                         |
| ••••• | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • |
|       |                                         |                                         |                                         |
|       |                                         |                                         |                                         |
|       |                                         |                                         |                                         |
|       |                                         |                                         |                                         |
|       |                                         |                                         |                                         |

| 1 | 2 |
|---|---|
| 1 | 1 |
|   |   |

| ••••••••••••••••••••••••••••••••••••••• |
|-----------------------------------------|
|                                         |
|                                         |
|                                         |
|                                         |
|                                         |
| ••••••••••••••••••••••••••••••••••••••• |
|                                         |
|                                         |
|                                         |
|                                         |
|                                         |
|                                         |
|                                         |
|                                         |
|                                         |
|                                         |
|                                         |
|                                         |
|                                         |
|                                         |
|                                         |
|                                         |
|                                         |
|                                         |
|                                         |
|                                         |
|                                         |
|                                         |
|                                         |
|                                         |
|                                         |
|                                         |
|                                         |
|                                         |
|                                         |
|                                         |
|                                         |

Turn over ▶

Turn over ▶

| <br> |
|------|
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
| <br> |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
| <br> |
|      |
|      |
| <br> |
| <br> |

Copyright © 2005 AQA and its licensors. All rights reserved.