Surname					Other	Names				
Centre Number							Candida	ate Number		
Candidate Signature										·

For Examiner's Use

General Certificate of Education June 2008 Advanced Subsidiary Examination ASSESSMENT and QUALIFICATIONS

CHEMISTRY CHM3/W Unit 3(a) Introduction to Organic Chemistry

Wednesday 4 June 2008 9.00 am to 10.00 am

For this paper you must have

a calculator.

Time allowed: 1 hour

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Answers written in margins or blank pages will not be marked.
- Your answers to the parts of **Section B** should be on the pages indicated.
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- The Periodic Table/Data Sheet is provided as an insert.

Information

- The maximum mark for this paper is 60.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- Write your answer to the question in **Section B** in continuous prose, where appropriate.
- You will be assessed on your ability to use an appropriate form and style of writing, to organise relevant information clearly and coherently, and to use specialist vocabulary, where appropriate.

Advice

• You are advised to spend about 45 minutes on **Section A** and about 15 minutes on **Section B**.

F	For Examiner's Use							
Question	Mark	Question	Mark					
1		4						
2		5						
3		6						
Total (Co	Total (Column 1)							
Total (Co	Total (Column 2) —>							
TOTAL	TOTAL							
Examine	r's Initials							

SECTION A

			Ans	wer all questions in the spaces	s provided.
1	Thre		ospheric polluta	ants which can be formed whe	n fossil fuels are burned are shown
	c		CO monoxide	NO nitrogen monoxide	SO ₂ sulphur dioxide
1	(a)		combustion of and NO	hydrocarbons in a petrol-engir	ned car can lead to the formation of
1	(a)	(i)	State what is	meant by the term hydrocarbo	n.
					(1 mark)
1	(a)	(ii)	-	ation for the incomplete combuse CO and H ₂ O as the only pro	stion of the hydrocarbon nonane oducts.
					(1 mark)
1	(a)	(iii)		ential condition for the formati Write an equation for the react	-
			Essential cond	dition	
			Equation		
					(2 marks)

1	(b)	Most petrol-engined cars are fitted with a catalytic converter.
1	(b)	(i) Identify one of the metals used as a catalyst in a catalytic converter.
		(1 mark)
1	(b)	(ii) Balance the following equation.
		C_8H_{18} +NO \longrightarrow CO_2 + N_2 + H_2O
		(1 mark)
1	(c)	Natural gas is mainly methane and is burned as a fuel. State what is meant by the term <i>fuel</i> .
		(1 mark)
1	(d)	Natural gas contains a small amount of hydrogen sulphide, H_2S Write an equation for the combustion of H_2S in air to give SO_2 and H_2O as the only products.
		(1 mark)

Turn over for the next question

2 The table below gives some of the names and structures of three isomers.

Name	Structure
	$H_3C - C - CH_3$ \parallel O
propanal	
prop-2-en-l-ol	H ₂ C=CHCH ₂ OH

2	(a)	Complete the table.	(2 marks)
2	(b)	Name the type of structural isomerism shown by these isomers.	
			(1 mark)
2	(c)	State what is meant by the term <i>molecular formula</i> .	
			(1 mark)
2	(d)	Give the molecular formula for these isomers.	
			(1 mark)

(e)	Prop	anal reacts with acidified potassium dichromate(VI) to form a carboxylic acid.
(e)	(i)	State the type of reaction.
		(1 mark)
(e)	(ii)	Draw the structure of the carboxylic acid formed from propanal in this reaction.
		(1 mark)
(e)	(iii)	Tollens' reagent or Fehling's solution can be used to show whether any propanal is present as an impurity in the carboxylic acid. Choose one of these reagents and state what will be observed if propanal is present.
		Chosen reagent
		Observation if propanal is present(1 mark)
(f)	Prop	-2-en-l-ol is an unsaturated alcohol.
(f)	(i)	State what is meant by the term <i>unsaturated</i> .
		(1 mark)
(f)	(ii)	Identify the class of alcohol to which prop-2-en-1-ol belongs.
		(1 mark)
(f)	(iii)	Draw the structure of the product formed when prop-2-en-l-ol reacts with bromine.
	(e) (e) (f) (f)	(e) (ii) (e) (iii) (f) Prop (f) (i)

(1 mark)

3	(a)	trich	achloromethane, CCl ₄ , can be made by the reaction of chlorine with loromethane, CHCl ₃ reaction occurs in sunlight.
3	(a)	(i)	Name the type of mechanism for this reaction.
			(1 mark)
3	(a)	(ii)	Outline the following steps in the mechanism for the reaction of chlorine with CHCl ₃ to form CCl ₄
			Initiation step
			First propagation step
			Second propagation step
			A termination step
			(4 marks)

3 (b) The following reaction mechanism is suggested to show how the chlorofluorocarbon CF₂Cl₂ may damage the ozone layer (O₃) in the upper atmosphere.

(b) (i) Give the name of CF_2Cl_2

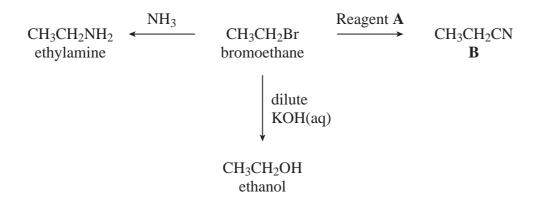
	11	nark

(b) (ii) Name the type of reactive intermediate shown in each of these three steps.

(1 mark)

(1 mark)

(b) (iii) Name the type of mechanistic step illustrated by Step 3 of this mechanism.


/ 1	7 \

(1 mark)

Turn over for the next question

4 Consider the following reactions of bromoethane.

- **4** (a) Bromoethane reacts with ammonia to produce ethylamine.
- **4** (a) (i) What feature of the bromoethane molecule makes it susceptible to attack by an ammonia molecule?

(1 *mark*)

4 (a) (ii) Outline a mechanism for this reaction.

(4 marks)

4	(b)	Bromoethane is converted into compound B by reaction with reagent A . Identify reagent A and give the name of compound B .
		Identity of reagent A
		Name of compound B (2 marks)
		(2 marks)
4	(c)	The conversion of bromoethane into ethanol is a substitution reaction in which a nucleophile attacks the organic compound.
4	(c)	(i) State what is meant by the term <i>nucleophile</i> .
4	(c)	(1 mark) (ii) Identify the nucleophile in the reaction of potassium hydroxide with bromoethane.
		(1 mark)

Turn over for the next question

5 Consider the following conversion of compound **P** into compound **Q**.

$$\begin{array}{c} \text{CH}_3 \\ \text{H}_3\text{C} - \text{CH} - \text{CH}_2 - \text{CH}_2\text{Br} & \xrightarrow{\text{KOH(ethanol)}} & \text{H}_3\text{C} - \text{CH} - \text{CH} = \text{CH}_2 \\ & \text{P} & \text{Q} \end{array}$$

5 (a) Give the name of compound **Q**.

......(1 mark)

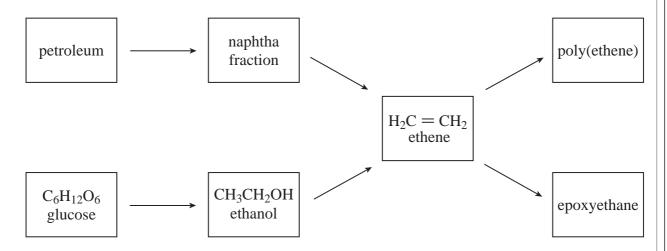
5 (b) Name and outline a mechanism for the conversion of P into Q.

Name of mechanism

Mechanism

(4 marks)

5	(c)	Hydrogen bromide reacts with \mathbf{Q} to form compound \mathbf{R} , which is a position is	omer of P .
5	(c)	(i) Identify compound R .	
			(1 mark)
5	(c)	(ii) Name the type of mechanism for the conversion of ${\bf Q}$ into ${\bf R}$.	
			(1 mark)
5	(d)	Draw the structure of an alkene which is an isomer of \mathbf{Q} and which shows stereoisomerism. State the type of stereoisomerism shown by this isomer.	
		Structure of isomer	
		Type of stereoisomerism	
		Type of stereoisomerism	(2 marks)


Turn over for the next question

SECTION B

Answer the question below in the space provided on pages 13 to 17 of this booklet. You should answer each part of the question on the separate page indicated. Each part of the question is reprinted at the top of the page.

6 Ethene can be produced either from petroleum or from glucose. These processes and the formation of some useful products from ethene are illustrated in the following scheme.

6 (a) The naphtha fraction is separated from petroleum by the process of fractional distillation. State the essential features of this process and explain how separation is achieved.

(4 marks)

6 (b) Give the name of the process by which ethene is produced from the naphtha fraction. Give **one** essential condition for this process and name the type of reactive intermediate involved.

(3 marks)

6 (c) State what must be added to an aqueous solution of glucose to convert it into ethanol. Name the process and write an equation for this reaction.

(3 marks)

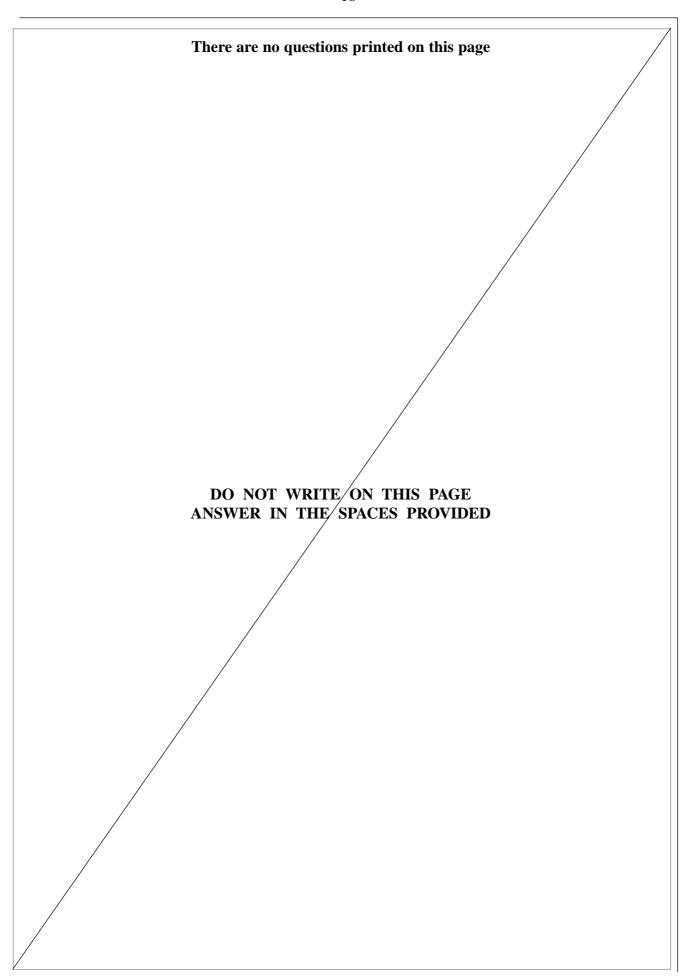
6 (d) The reaction of aqueous glucose to form ethanol produces a dilute aqueous solution. Name the process used to separate ethanol from this dilute aqueous solution. Identify a catalyst for the conversion of ethanol into ethene and state the type of reaction.

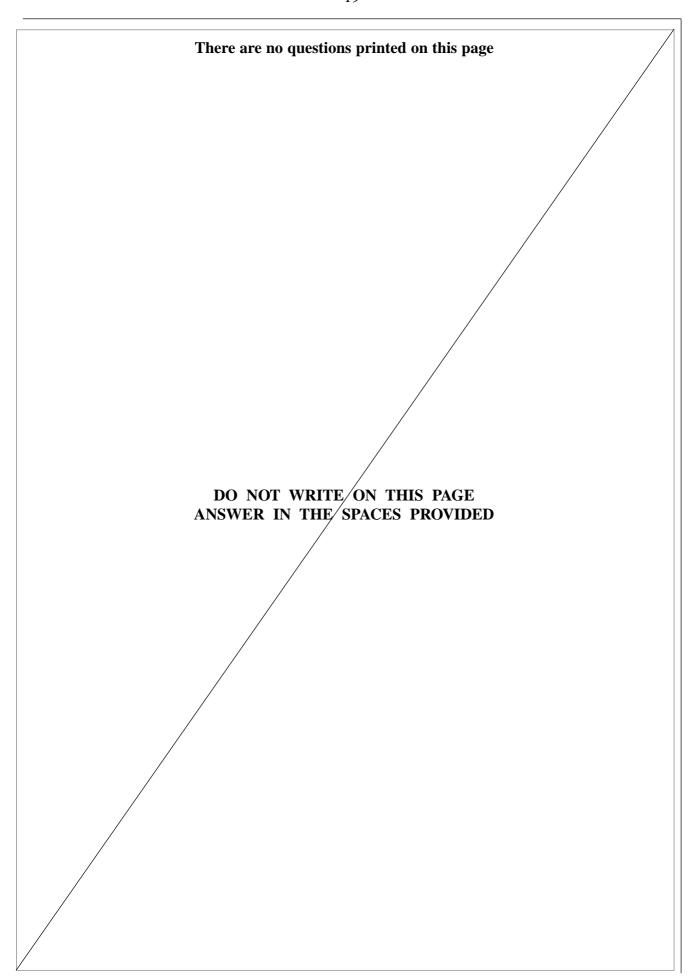
(3 marks)

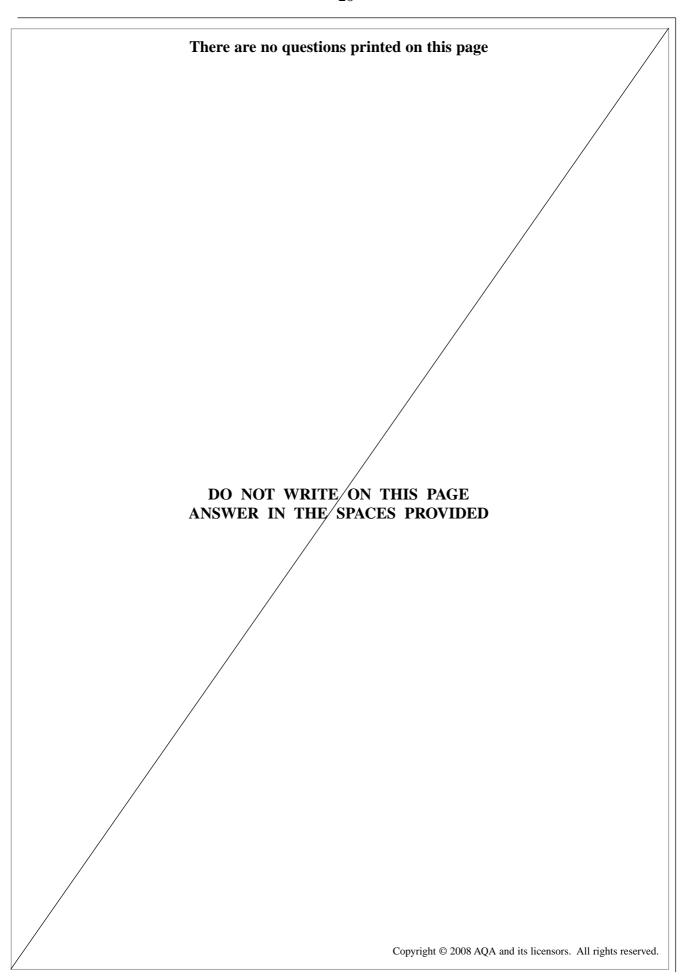
6 (e) Draw the structure of the repeating unit of poly(ethene) and the structure of epoxyethane.

(2 marks)

END OF QUESTIONS


6 (a) The naphtha fraction is separated from petroleum by the process of fractional distillation. State the essential features of this process and explain how separation is achieved.
Write your answer to Question 6(a) on this page.


6 (b) Give the name of the process by which ethene is produced from the naphtha fraction. Give one essential condition for this process and name the type of reactive intermediate involved.
Write your answer to Question 6(b) on this page.


6 (c) State what must be added to an aqueous solution of glucose to convert it into ethanol. Name the process and write an equation for this reaction.
Write your answer to Question 6(c) on this page.

6 (d) The reaction of aqueous glucose to form ethanol produces a dilute aqueous solution. Name the process used to separate ethanol from this dilute aqueous solution. Identify a catalyst for the conversion of ethanol into ethene and state the type of reaction.
Write your answer to Question 6(d) on this page.

6 (e) Draw the structure of the repeating unit of poly(ethene) and the structure of epoxyethane.
Write your answer to Question 6(e) on this page.

CHEMISTRY CHM3/W Unit 3(a) Introduction to Organic Chemistry

Gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

Table 1 Proton n.m.r chemical shift data

Type of proton	δ/ррт
RCH ₃	0.7–1.2
R_2CH_2	1.2–1.4
R_3 CH	1.4–1.6
$RCOCH_3$	2.1–2.6
$ROCH_3$	3.1–3.9
$RCOOCH_3$	3.7–4.1
ROH	0.5–5.0

Table 2 Infra-red absorption data

Bond	Wavenumber/cm ⁻¹
С—Н	2850-3300
С—С	750–1100
C=C	1620–1680
C=O	1680–1750
С—О	1000-1300
O—H (alcohols)	3230–3550
O—H (acids)	2500–3000

The Periodic Table of the Elements

■ The atomic numbers and approximate relative atomic masses shown in the table are for use in the examination unless stated otherwise in an individual question.

	=											≡	≥	>	5	=	0
		_	Key														4.0 He Helium 2
ю. _п 4	9.0 Be Beryllium 4	_ (0	relative atomic atomic atomic number	relative atomic mass atomic number		6.9 Li Lithium						10.8 B Boron 5	12.0 C Carbon 6	14.0 N Nitrogen 7	16.0 O Oxygen 8	19.0 F Fluorine 9	20.2 Ne Neon
	24.3 Mg Magnesium 12											27.0 AI Aluminium 13	28.1 Si Silicon	31.0 P Phosphorus 15	32.1 S Sulphur 16	35.5 Cl Chlorine	39.9 Ar Argon 18
<u> </u>		Scool			52.0 Ç	54.9 K	55.8 Fe			1	65.4 Zn	69.7 Ga	72.6 Ge	74.9 AS	1	79.9 Br	83.8 Kr
	_	_	_	vanadium 23	Chromium 24	Manganese 25	26 2	Cobalt 27	Nickei	Copper 29	30 Zinc	Gallium 31	Germanium 32	Arsenic 33	Selenium 34	Bromine 35	Arypton 36
	87.6 Sr	6.88 ∀	91.2 Zr	95.9 Nb	6 .96	98.9 Tc	101.1 Ru	102.9 Rh	6.4 Pd	107.9 Ag	112.4 Cd	114.8 In	118.7 Sn	121.8 Sb	127.6 Te	126.9 I	131.3 Xe
یب رن	<u> </u>	Yttrium 39	⊏	Niobiun 41	Molybdenum 42	Technetium 43	Ruthenium 44	Rhodium 45	alladium	Silver 47	Cadmium 48	Indium 49		Antimony 51	Tellurium 52	lodine 53	Xenon 54
	137.3 1 Ba	138.9 La	178.5 Hf	180.9 Ta	183.9 186.2 190.2 192.2 19 W Re Os Ir	186.2 Re	190.2 Os	192.2 Ir	5.1 P		200.6 Hg	I .	207.2 Pb	209.0 Bi	210.0 Po	210.0 At	222.0 Rn
ب	Barium L 56	يد∋	Hafnium 72	Tantalum 73	Tungsten 74	Rhenium 75	Osmium 76	Iridium 77	latinum			Thallium 81		Bismuth 83	_	Astatine 85	Radon 86
	223.0 226.0 227	227 Ac Actinium 89 †															
					140.9		144.9	150.4	52.0		158.9	162.5	164.9	67.3	168.9		175.0
	Lanthar	ides		ΔĘ	in	Neodymium F	Pm Sm In Promethium Samarium 61 62 62	Samarium	Eu Gd Europium Gadolinium 63	Gd Idolinium	Tb Terbium 65	Dysprosium Holmium 66 67 6	Holmium 67	Erbium		Yb Ytterbium 70	Lu Lutetium 71
\sim	Solution Sol	es		232.0 Th Thorium 90	231.0 238.0 Da U Uranium 91 92	238.0 U Uranium 19292	237.0 Neptunium 93	Pu Pu Plutonium 34	237.0 239.1 243.1 24 Np Pu Am Americium Plutonium Americium (93 94 95 96	7.1 Cm Surium	247.1 252.1 (252) (257) (258) (259) (260) Bk Cf Es Fm Md No Lr Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium 97 98 99 100 101 102 103	252.1 Cf Californium 98	(252) Es Einsteinium 99	(257) Fm Fermium 100	(258) Md Mendelevium 101	(259)	(260) Lr Lawrencium 103

g		<u>, c</u>	D	764.9 4 .9	او/ ع آ	168.9 Tm	73.0 175.0 Yb Lu
Gadoliniu 34		m Terbium 65	Dysprosium 66	Holmium 67	Erbium 68	Thuliun 69	Ytterbium Lutetium 70 71
247.1 Cm	243.1 247.1 Cm	247.1 BK	252.1 Cf	(252) Es	(257) Fm	(258) Md	(259) (260) No Lr
Curium 96	_	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevii 101	Nobelium Lawrencium 102 103