ERRATUM NOTICE

CHM3/W

CHM3/W

General Certificate of Education June 2007

CHEMISTRY Unit 3(a) Introduction to Organic Chemistry

Wednesday 6 June 2007 9.00 am to 10.00 am

Before the start of the examination please ask candidates to amend their question papers as follows. (Please read out this message twice to ensure understanding.)

Turn to page 6, question 3 (a)(i)

Instructions to Invigilators

The word 'occurring' has been misspelt as 'occurring'. Insert the letter 'r' after the first letter 'r' so that the word reads 'occurring'.

ERRATUM NOTICE

General Certificate of Education June 2007

CHEMISTRY
Unit 3(a) Introduction to Organic Chemistry

Wednesday 6 June 2007 9.00 am to 10.00 am

Instructions to Invigilators

Before the start of the examination please ask candidates to amend their question papers as follows. (Please read out this message twice to ensure understanding.)

Turn to page 6, question 3 (a)(i)

The word 'occurring' has been misspelt as 'occurring'. Insert the letter 'r' after the first letter 'r' so that the word reads 'occurring'.

Surname					Other	Names			
Centre Number					Candida	ate Number			
Candidate Signature									

For Examiner's Use

General Certificate of Education June 2007 Advanced Subsidiary Examination ASSESSMENT and QUALIFICATIONS ALLIANCE

CHEMISTRY CHM3/W Unit 3(a) Introduction to Organic Chemistry

Wednesday 6 June 2007 9.00 am to 10.00 am

For this paper you must have

· a calculator.

Time allowed: 1 hour

Instructions

- Use blue or black ink or ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Answer the questions in **Section A** and **Section B** in the spaces provided.
- Your answers to the parts of **Section B** should be on the pages indicated.
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- The Periodic Table/Data Sheet is provided as an insert.

Information

- The maximum mark for this paper is 60.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- Write your answer to the question in **Section B** in continuous prose, where appropriate. You will be assessed on your ability to use an appropriate form and style of writing, to organise relevant information clearly and coherently, and to use specialist vocabulary, where appropriate.

Advice

• You are advised to spend about 45 minutes on **Section A** and about 15 minutes on **Section B**.

For Examiner's Use			
Question	Question Mark Question		
1			
2			
3			
4			
5			
6			
Total (Co	lumn 1)	→	
Total (Column 2) —>			
TOTAL			
Examine	r's Initials		

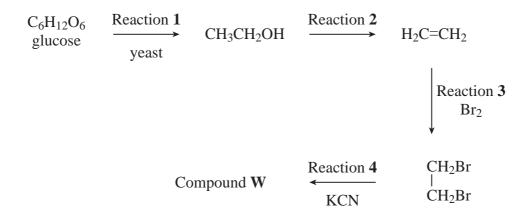
There are no questions printed on this page

SECTION A

Answer all the questions in the spaces provided.

1	(a)		oleum contains a mixture of hydrocarbons. The mixture can be separated into ions by fractional distillation.
		(i)	State what is meant by the term <i>hydrocarbon</i> .
		(ii)	State the two physical changes which occur during fractional distillation.
			Change 2
			(3 marks)
	(b)	Ethe	cracking of fractions obtained from petroleum can lead to high yields of ethene. ne can be polymerised to form poly(ethene). Ethene can also be oxidised to form very reactive compound epoxyethane.
		(i)	Draw the structure of the repeating unit of poly(ethene).
		(ii)	State why epoxyethane is a very reactive compound.
		(iii)	Name the product formed when epoxyethane reacts with water.
			(3 marks)

2	The	cracki	ing of alkanes gives useful products such as motor fuels and alkenes.
	(a)	(i)	Name the type of reactive intermediate formed during the catalytic cracking of alkanes.
		(ii)	Identify a catalyst used in catalytic cracking.
			(2 marks)
	(b)	(i)	Name the type of reactive intermediate formed during the thermal cracking of alkanes.
		(ii)	Write an equation for the thermal cracking of one molecule of the alkane $C_{10}H_{22}$ to produce a different alkane and propene only.
	(c)	Mote	or fuels contain cyclohexane, C ₆ H ₁₂
		(i)	State which of the two types of cracking is more likely to produce cyclohexane as one of the products.
		(ii)	State the conditions necessary for cyclohexane to undergo complete combustion.
		(iii)	Draw the structure of cyclohexane.
		(iv)	Write an equation for the incomplete combustion of C_6H_{12} to form carbon and water only.


(d)

12

nitro Thes	burning of fuels in a petrol engine produces some carbon monoxide and some gen monoxide. e two gases are atmospheric pollutants which can be removed by the use of a ytic converter.
(i)	Write an equation for the reaction in which nitrogen monoxide is formed in a petrol engine. State one essential condition for this reaction to occur.
	Equation
	Condition
(ii)	Identify one of the metals used as a catalyst in a catalytic converter.
(iii)	Write an equation to show how carbon monoxide and nitrogen monoxide react together in a catalytic converter.
	(4 marks)

Turn over for the next question

3 Consider the following sequence of reactions.

- (a) (i) Name the process occurring in Reaction 1.
 - (ii) Write an equation for Reaction 1 and state a suitable temperature for this process to occur.

Equation

(b) Name the type of mechanism in Reaction 2.

(1 mark)

(c) Outline a mechanism for Reaction 3.

10

(d)	Compound W is formed in Reaction 4 .			
	(i)	Name the type of mechanism in Reaction 4.		
	(ii)	Draw the structural formula of compound \mathbf{W} ($M_{\rm r}=80.0$), showing all of the bonds in the molecule.		
		(2 marks)		
		(2 marks)		

Turn over for the next question

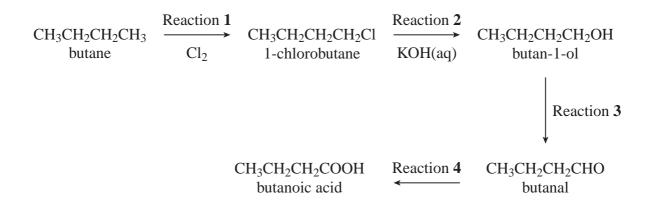
4	Isom	ners are compounds with the same molecular formula.						
	(a)	Com	pound \mathbf{X} is the alcohol $CH_3CH(OH)CH_3$					
		(i)	Name compound X.					
		(ii)	Draw the structure of the position isomer of compound \mathbf{X} .					
			(2 marks)					
	(b)	Com	pound Y is the alkene $(CH_3)_2C=C(CH_3)_2$					
		(i)	Name compound Y.					
		(ii)	Draw the structure of a straight-chain isomer of compound Y .					
			(2 marks)					
	(c)	Com	pound Z is the ketone CH ₃ CH ₂ COCH ₂ CH ₃					
		(i)	Name compound Z .					
		(ii)	Draw the structure of a functional group isomer of compound Z which contains a C=O group.					

10

(d)	(i)	Name the type of stereoisomerism shown by 1,2-dibromoethene.						
	(ii)	Draw and name the two stereoisomers of 1,2-dibromoethene.						
		Stereoisomer 1	Stereoisomer 2					
		Name	Name	••••••				
			(.	3 marks)				
(e)		at feature of the double bond in 1,2-dibromoe aging into Stereoisomer 2 ?	thene prevents Stereoisomer 1	. from				
	•••••			(1 mark)				

Turn over for the next question

5 The following table shows some carboxylic acids which occur in nature.


Name	Structure
Stearic acid	CH ₃ (CH ₂) ₁₆ COOH
Linoleic acid	CH ₃ (CH ₂) ₄ CH=CHCH ₂ CH=CH(CH ₂) ₇ COOH
Ricinoleic acid	CH ₃ (CH ₂) ₄ CH ₂ CH(OH)CH ₂ CH=CH(CH ₂) ₇ COOH

(a)	Give	the molecular formula of stearic acid.
	•••••	(1 mark)
(b)	(i)	Give the empirical formula of linoleic acid.
	(ii)	Identify the reagent and catalyst needed to convert linoleic acid into stearic acid.
		Reagent
		Catalyst
(c)	Lino	leic acid can be converted into ricinoleic acid.
	(i)	Name the type of reaction involved.
	(ii)	Suggest why this reaction leads to the formation of more than one organic product.
		(2 marks)
(d)		noleic acid has an alcohol functional group. Identify the class of alcohols to which oleic acid belongs.
	•••••	(1 mark)

SECTION B

Answer the question below in the space provided on pages 12 to 14 of this booklet. You should answer part (a) on page 12, part (b) on page 13 and part (c) on page 14.

6 Consider the following sequence of reactions.

(a) The type of mechanism for Reaction 1 is the same as that for the chlorination of methane. Identify the type of reactive intermediate and state the conditions for this reaction.

Give the name of each step in this type of mechanism.

Write an overall equation for the reaction that occurs when C_4H_{10} reacts with a large excess of chlorine to form C_4Cl_{10}

(6 marks)

(b) In Reaction 2, a nucleophile reacts with 1-chlorobutane to form butan-1-ol as the main organic product. State what is meant by the term *nucleophile*.

Identify the nucleophile in Reaction 2 and the feature of the 1-chlorobutane molecule which makes it susceptible to nucleophilic attack.

Give **one** change to the reaction conditions for Reaction 2 so that the main organic product is but-1-ene rather than butan-1-ol.

(4 marks)

(c) Reactions 3 and 4 are of the same type. For these two reactions, state the type of reaction involved, identify a suitable reagent or combination of reagents and state how a high yield of butanoic acid can be obtained.

Outline a simple chemical test to detect the presence of any unreacted butanal in the final reaction mixture.

(5 marks)

Write your answer to Question 6(a) on this page.
www.theallpapers.com

Write your answer to Question 6(b) on this page.
www.theallpapers.com

Write your answer to Question 6(c) on this page.
www.theallpapers.com

There are no questions printed on this page.

Do not write on this page.

There are no questions printed on this page.

Do not write on this page.

CHEMISTRY CHM3/W Unit 3(a) Introduction to Organic Chemistry

Gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

Table 1 Proton n.m.r chemical shift data

Type of proton	δ/ppm
RCH ₃	0.7–1.2
R_2CH_2	1.2–1.4
R_3 CH	1.4–1.6
RCOCH ₃	2.1–2.6
$ROCH_3$	3.1–3.9
$RCOOCH_3$	3.7–4.1
ROH	0.5-5.0

Table 2 Infra-red absorption data

Bond	Wavenumber/cm ⁻¹
С—Н	2850-3300
C—C	750–1100
C=C	1620–1680
C=O	1680–1750
C—O	1000-1300
O—H (alcohols)	3230–3550
O—H (acids)	2500–3000

The Periodic Table of the Elements

■ The atomic numbers and approximate relative atomic masses shown in the table are for use in the examination unless stated otherwise in an individual question.

	=											≡	≥	>	5	₹	0
		_	Key														4.0 He Helium 2
ю. _п 4	9.0 Be Beryllium 4	_ (0	relative atomic atomic atomic number	relative atomic mass atomic number		6.9 Li Lithium						10.8 B Boron 5	12.0 C Carbon 6	14.0 N Nitrogen 7	16.0 O Oxygen 8	19.0 F Fluorine 9	20.2 Ne Neon
	24.3 Mg Magnesium 12											27.0 AI Aluminium 13	28.1 Si Silicon	31.0 P Phosphorus 15	32.1 S Sulphur 16	35.5 Cl Chlorine	39.9 Ar Argon 18
<u> </u>		Scool			52.0 Christian	54.9 K	55.8 Fe			1	65.4 Zn	69.7 Ga	72.6 Ge	74.9 AS	1	79.9 Br	83.8 Kr
	_	_	_	vanadium 23	Chromium 24	Manganese 25	26 2	Cobalt 27	Nickei	Copper 29	30 Zinc	Gallium 31	Germanium 32	Arsenic 33	Selenium 34	Bromine 35	Arypton 36
	87.6 Sr	6.88 ∀	91.2 Zr	95.9 Nb	95.9 Mo	98.9 Tc	101.1 Ru	102.9 Rh	6.4 Pd	107.9 Ag	112.4 Cd	114.8 In	118.7 Sn	121.8 Sb	127.6 Te	126.9 I	131.3 Xe
یب رن	<u> </u>	Yttrium 39	⊏	Niobiun 41	Molybdenum 42	Technetium 43	Ruthenium 44	Rhodium 45	alladium	Silver 47	Cadmium 48	Indium 49		Antimony 51	Tellurium 52	lodine 53	Xenon 54
	137.3 1 Ba	138.9 La	178.5 Hf	180.9 Ta	183.9 186.2 190.2 192.2 19 W Re Os Ir	186.2 Re	190.2 Os	192.2 Ir	5.1 P		200.6 Hg	I .	207.2 Pb	209.0 Bi	210.0 Po	210.0 At	222.0 Rn
ب	Barium L 56	يد∋	Hafnium 72	Tantalum 73	Tungsten 74	Rhenium 75	Osmium 76	Iridium 77	latinum			Thallium 81	Lead 82	Bismuth 83	_	Astatine 85	Radon 86
	223.0 226.0 227	227 Ac Actinium 89 †															
					140.9		144.9	150.4	52.0		158.9	162.5	164.9	67.3	168.9		175.0
	Lanthar	ides	-	ΔĘ	in	Neodymium 60	Pm Sm In Promethium Samarium 61 62 62	Samarium 52	Eu Gd Europium Gadolinium 63	Gd Idolinium	Tb Terbium 65	Dysprosium Holmium 66 67 6	Holmium 67	Erbium		Yb Ytterbium 70	Lu Lutetium 71
\sim	wees. Wees.	es		232.0 Th Thorium 90	231.0 238.0 Da U Uranium 91 92	238.0 U Uranium 19292	237.0 Neptunium 93	Pu Pu Plutonium 94	237.0 239.1 243.1 24 Np Pu Am Americium Plutonium Americium (93 94 95 96	7.1 Cm Surium	247.1 BK Berkelium 97	247.1 252.1 (252) (257) (258) (259) (260) Bk Cf Es Fm Md No Lr Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium 97 98 99 100 101 102 103	(252) Es Einsteinium 99	(257) Fm Fermium 100	(258) Md Mendelevium 101	(259) Nobelium 102	(260) Lr Lawrencium 103

ハラ	140.1 140.9 144.2 144.9 Ce Pr Nd Pn	_	150.4 Sm	152.0 Eu	157.3 Gd	158.9 Tb	162.5 DV		167.3 Er	168.9 Tm	173.0 Yb	175.0 Lu
Neodymium F 60 6		hium			Gadolinium 64	Terbium 65	Dysprosium 36	Holmium 67		Thulium Ytterbium 69 70	Ytterbium 70	Lutetium 71
232.0 231.0 238.0 237.0 Th Pa U Np	IΛÌ	_		l _	247.1 Cm	247.1 Bk	252.1 Cf	(252) Es	(257) Fm	(258) Md	(259) No	(260) Lr
Thorium Protactinium Uranium N 91 92 93		.≣	Plutonium 94	Americium 95		Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendeleviu 101	Nobelium 102	Lawrencium 103