
Surname			Other	Names			
Centre Number				Candida	ate Number		
Candidate Signature	е						

General Certificate of Education June 2006 Advanced Subsidiary Examination ASSESSMENT and QUALIFICATIONS
ALLIANCE

CHEMISTRY CHM3/W Unit 3(a) Introduction to Organic Chemistry

Wednesday 7 June 2006 9.00 am to 10.00 am

For this paper you must have

· a calculator.

Time allowed: 1 hour

Instructions

- Use blue or black ink or ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Answer questions in **Section A** and **Section B** in the spaces provided. All working must be shown.
- Do all rough work in this book. Cross through any work you do not want marked.
- The Periodic Table/Data Sheet is provided on pages 3 and 4. Detach this perforated sheet at the start of the examination.

Information

- The maximum mark for this paper is 60.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- Write your answers to the question in **Section B** in continuous prose, where appropriate. You will be assessed on your ability to use an appropriate form and style of writing, to organise relevant information clearly and coherently, and to use specialist vocabulary, where appropriate.

Advice

• You are advised to spend about 45 minutes on **Section A** and about 15 minutes on **Section B**.

F	or Exam	iner's Us	е	
Number	Mark	Number	Mark	
1				
2				
3				
4				
5				
6				
Total (Co	lumn 1)	\rightarrow		
Total (Column 2) —→				
TOTAL				
Examine	r's Initials			

SECTION A

Answer all questions in the spaces provided.

1	(a)		dustry, ethanol is made from ethene in an acid-catalysed reaction. Name the type action. Write an equation and identify a suitable catalyst for this reaction.
		Туре	of reaction
		Equa	ation
		Cata	lyst(3 marks)
	(b)		nol burns completely in a plentiful supply of air, but incomplete combustion rs if the air supply is limited.
		(i)	Identify a solid pollutant produced by burning ethanol in a limited supply of air.
		(ii)	Write an equation for the incomplete combustion of ethanol to produce the solid pollutant that you have identified in part (b)(i).
			(2 marks)

The Periodic Table of the Elements

■ The atomic numbers and approximate relative atomic masses shown in the table are for use in the examination unless stated otherwise in an individual question.

	_											≡	≥	>	5	=	0
		<u> </u>	Key														4.0 He Helium 2
9.0 Be		_	elative a	relative atomic mass		6.9 Li						10.8 B	12.0 C	14.0 Z	16.0 O		20.2 Ne
Beryllium 4		מז	atomic number	ımber —		Lithium 3						Boron 5		_	Oxygen 8	Fluorine 9	Neon 10
24.3 Mg					1							27.0 Al	^{28.1} Si	31.0 P	32.1 S		39.9 Ar
_												Ε	Silicon 14	Phosphorus Sulphur 15	Sulphur 16		Argon 18
40.1 45.0 Ca Sc	ွတ်		47.9 Ti	50.9 V	52.0 Ç	54.9 Mn	55.8 Fe	58.9 S	58.7 Ni	. J	65.4 Zn	69.7 Ga	72.6 Ge	74.9 As	79.0 Se	79.9 Br	83.8 Kr
Ε	anc		_	Vanadium 23	Chromium 24	Manganese 25	lron 26	Cobalt 27	Nickel 28	opper		Gallium 31		Arsenic 33	Selenium 34	Φ	Krypton 36
87.6 88.9 Sr	ര		91.2 Zr	92.9 Nb	95.9 Mo	98.9 Tc	101.1 Ru	102.9 Rh	106.4 Pd	6. D	112.4 Cd	114.8 n	118.7 Sn	121.8 Sb	127.6 Te	126.9 –	131.3 Xe
Strontium Yttrium	Ξ		⊏	Niob	Molybdenum 42	Technetium 43	Ruthenium	Rhodium 45	Palladium 46	is e	Cadmium 48	Indium 49		Antimony 51	Tellurium	lodine	Xenon 54
7.3 138. Ba			178.5 Hf	180.9 T.	183.9 W	186.2 Re	190.2 Os	192.2	195.1 Pt	0.4	200.6 Ha	204.4 T		209.0 Bi	210.0 Po	210.0 At	222.0 Rn
_	١Ę	<u>E</u> *	٤	Tantalum 73	Ilum Tungsten Rhenium Osmium Iridium Platinum G	Rhenium 75	Osmium 76	Iridium 77	Platinum 78	plog	Mercury 80	E	Lead 82		Polonium 84	an.	Radon 86
226.0 227 Ra A Radium Acti	~ ₹	227 Ac Actinium 89 †															
				140.1	140.9	144.2	144.9	150.4	152.0	157.3	158.9	162.5			168.9		175.0
Tanthanides	<u>a</u>	S		Cerium 58	Pr Nd Pm Sm Eu Gd Tb Praseodymium Neodymium N	Neodymium 50	Pm Promethium 31	Sm Samarium 52	Eu Europium 63	Gd Gadolinium 64	Tb Terbium 65	Dy Ho Dysprosium Holmium 66 67	_	Er Erbium 68	Tm Thulium 69	_	Lu Lutetium 71
Actinides	"		· ·		231.0 Pa	238.0 U	237.0 Np	239.1 Pu	243.1 Am	247.1 Cm	247.1 BK	252.1 Cf	(252) Es	(257) Fm	(258) Md	(259) No	(260) Lr
	,			06	Protactinium 91	92 (s	Neptunium (Plutonium	Americium 95	96 96	97	97 Serkellum Californium Fermium 197 98 100	EINSteimum 66	100	101 102 103	102	Lawrengum 103

	140.9 144.2 Pr Nd	144.2 Nd	u	150.4 Sm	152.0 Eu	157.3 Gd	158.9 Tb	162.5 Dv	162.5 164.9 Dy Ho	167.3 Er	168.9 173.0 Tm Yb	173.0 Yb	175.0 Lu
	Praseodymium	um Praseodymium Neodymium Prome	thium	Samarium	n Europium C	Sadolinium	Terbium	Dysprosium	Holminm	Erbium	Thulium	Ytterbium	Lutetium
80	29	09		62	63	4	35	99	29	89	69	70	71
Ė	231.0				_	247.1	247.1	252.1	(252)	(257)	(258)	(259)	(260)
	Th Pa U		S N	Pu	Am	CB	ਲ	ర	Ë	Æ	βg	2	ڐ
Thorium	Protactinium Uranium	⊑		⊆	Americium	Curium	Berkelium	Californium	Einsteinium	Ferminm	Mendelevium	Nobelium	Lawrencium
		92	93	94	92	96	37	86	66	100	101	102	103

Gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

Table 1 Proton n.m.r chemical shift data

Type of proton	δ/ppm
RCH_3	0.7–1.2
R_2CH_2	1.2–1.4
R_3CH	1.4–1.6
$RCOCH_3$	2.1–2.6
$ROCH_3$	3.1–3.9
$RCOOCH_3$	3.7–4.1
ROH	0.5-5.0

Table 2 Infra-red absorption data

Bond	Wavenumber/cm ⁻¹
С—Н	2850-3300
С—С	750–1100
C=C	1620–1680
C=O	1680–1750
С—О	1000-1300
O—H (alcohols)	3230–3550
O—H (acids)	2500–3000

2	(a)		e an equation for the thermal decomposition of ethane to form ethene and one r product.						
		•••••	(1 mark)						
	(b)) Bromoethane, CH ₃ CH ₂ Br, reacts with sodium hydroxide in an elimination form ethene.							
		(i)	Outline a mechanism for this elimination reaction.						
		(ii)	Suggest one reason why this method for making ethene is not used in industry.						
			(4 marks)						
	(c)	Ethe	ne is used to make epoxyethane.						
		(i)	State why epoxyethane is very reactive.						
		(ii)	Identify the product formed when one molecule of epoxyethane reacts with one molecule of water. Give a use for this product.						
			Product						
			Use						

3			on of bromine with ethane is similar to that of chlorine with ethane. Three steps in action of ethane are shown below.
		St	tep 1 $Br_2 \longrightarrow 2Br^{\bullet}$
		St	tep 2 Br • + CH ₃ CH ₃ \longrightarrow CH ₃ CH ₂ • + HBr
		St	tep 3 CH_3CH_2 + Br_2 \longrightarrow CH_3CH_2Br + Br
	(a)	(i)	Name this type of mechanism.
		(ii)	Suggest an essential condition for this reaction.
		(iii)	Steps 2 and 3 are of the same type. Name this type of step.
		(iv)	In this mechanism, another type of step occurs in which free-radicals combine. Name this type of step. Write an equation to illustrate this step.
			Type of step
			Equation
			(5 marks)
	(b)		ner substitution in the reaction of bromine with ethane produces a mixture of d organic compounds.
		(i)	Name a technique which could be used to separate the different compounds in this mixture.
		(ii)	Write an equation for the reaction between bromine and ethane which produces hexabromoethane, C_2Br_6 , by this substitution reaction.

(2 marks)

(c) The compound 1,2-dibromo-1,1,2,2-tetrafluoroethane is used in some fire extinguishers. Draw the structure of this compound.

(1 mark)

(d) Halothane is used as an anaesthetic and has the following structure.

$$\begin{array}{c|c} H & F \\ \mid & \mid \\ Cl - C - C - F \\ \mid & \mid \\ Br & F \end{array}$$

(i) Give the systematic name of halothane.

.....

(ii) Calculate the M_r of halothane.

.....

(iii) Calculate the percentage by mass of fluorine in halothane.

.....(3 marks)

4 Consider the following pairs of structural isomers.

Molecular formula	Structure	Structure
C ₄ H ₁₀ O	CH ₃	Isomer B CH ₃ CH ₂ CH ₂ CH ₂ OH
	Isomer C $CH_3CH_2-C=O$ H	Isomer D H ₃ C - C - CH ₃ O
C ₆ H ₁₂	Isomer \mathbf{E} CH_2 H_2C CH_2 H_2C CH_2 CH_2	Isomer \mathbf{F} $CH_3CH_2CH = CHCH_2CH_3$

(a)	(1)	Explain what is meant by the term structural isomers.
	(ii)	Complete the table to show the molecular formula of isomers $\bf C$ and $\bf D$.
	(iii)	Give the empirical formula of isomers E and F.
		(4 marks)
(b)	isom	nple chemical test can be used to distinguish between separate samples of er A and isomer B . Suggest a suitable test reagent and state what you would rve in each case.
	Test	reagent
	Obse	ervation with isomer $m{A}$
	Obse	ervation with isomer B
		(3 marks)

(c)	A simple chemical test can be used to distinguish between separate samples of isomer C and isomer D . Suggest a suitable test reagent and state what you would observe in each case.
	Test reagent
	Observation with isomer C
	Observation with isomer D
(d)	A simple chemical test can be used to distinguish between separate samples of isomer E and isomer F . Suggest a suitable test reagent and state what you would observe in each case.
	Test reagent
	Observation with isomer E
	Observation with isomer F
	(3 marks)

Turn over for the next question

5 There are **seven** isomeric carbonyl compounds with the molecular formula $C_5H_{10}O$ The structures and names of some of these isomers are given below.

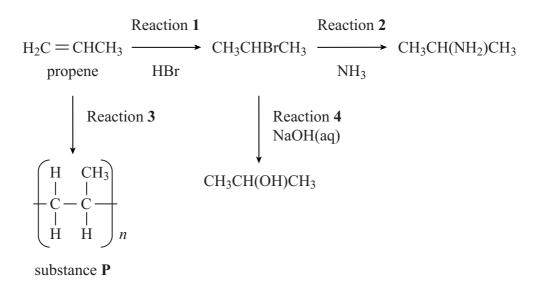
Structure	Name
$CH_3CH_2CH_2CH_2-C=O$ H	pentanal
$CH_3 CH_2 - CH - C = O$ H	2-methylbutanal
CH_{3} $CH_{3} - C - C = O$ $CH_{3} H$	2,2-dimethylpropanal
$\begin{array}{c c} CH_3CH_2-C-CH_2CH_3\\ \parallel\\ O\end{array}$	
	pentan-2-one

- (a) (i) Complete the table.
 - (ii) **Two** other isomeric carbonyl compounds with the molecular formula C₅H₁₀O are not shown in the table. One is an aldehyde and one is a ketone. Draw the structure of each.

isomeric aldehyde

isomeric ketone

8


(b)	Pent	Pentanal, CH ₃ CH ₂ CH ₂ CHO, can be oxidised to a carboxylic acid.		
	(i)	Write an equation for this reaction. Use [O] to represent the oxidising agent.		
	(ii)	Name the carboxylic acid formed in this reaction.		
		(2 marks)		
(c)	Penta	anal can be formed by the oxidation of an alcohol.		
	(i)	Identify this alcohol.		
	(ii)	State the class to which this alcohol belongs.		
		(2 marks)		

Turn over for the next question

SECTION B

Answer the question in the space provided.

6 One of the fractions obtained from petroleum can be thermally cracked to produce propene. Some of the reactions of propene are shown below.

(a) Identify the type of reactive intermediates formed during thermal cracking and explain how they are produced.

(2 marks)

(b) Outline a mechanism for Reaction 1.

(4 marks)

(c) Outline a mechanism for Reaction 2.

(4 marks)

(d) Name substance **P**, which is formed in Reaction 3. Explain why substance **P** is a solid at room temperature.

(3 marks)

(e) Reaction 4 is a nucleophilic substitution reaction. Explain what is meant by the term *nucleophile* and identify the nucleophile in this reaction.

(2 marks)

www.theallpapers.com

END OF QUESTIONS

	•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •
•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •

. •
•
•
 •
•
 •
 •
 •
 •
 •
 •
•
 •
•
•
•
•
•
•
•
•
•
. •
•

. •
•
•
 •
•
 •
 •
 •
 •
 •
 •
•
 •
•
•
•
•
•
•
•
•
•
. •
•
