Surname		Other	Names			
Centre Number			Candida	ate Number		
Candidate Signature						

Leave blank

General Certificate of Education June 2004 Advanced Subsidiary Examination

CHEMISTRY CHM3/W Unit 3(a) Introduction to Organic Chemistry

Thursday 10 June 2004 Morning Session

In addition to this paper you will require: a calculator.

Time allowed: 1 hour

Instructions

- Use blue or black ink or ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in Section A and Section B in the spaces provided.
 All working must be shown.
- Do all rough work in this book. Cross through any work you do not want marked.
- The Periodic Table/Data Sheet is provided on pages 3 and 4. Detach this perforated sheet at the start of the examination.

Information

- The maximum mark for this paper is 60.
- Mark allocations are shown in brackets.
- This paper carries 25 per cent of the total marks for AS. For Advanced Level this paper carries 12½ per cent of the total marks.
- You are expected to use a calculator where appropriate.
- The following data may be required. Gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$
- Your answers to the question in **Section B** should be written in continuous prose, where appropriate. You will be assessed on your ability to use an appropriate form and style of writing, to organise relevant information clearly and coherently, and to use specialist vocabulary, where appropriate.

Advice

• You are advised to spend about 45 minutes on **Section A** and about 15 minutes on **Section B**.

	For Exam	iner's Use	
Number	Mark	Number	Mark
1			
2			
3			
4			
5			
Total (Column	1)	→	
Total (Column	2)	→	
TOTAL			
Examine	r's Initials		

SECTION A

Answer all questions in the spaces provided.

1	(a)	Etha	anol, C ₂ H ₅ OH, can be made from glucose, C ₆ H ₁₂ O ₆
		(i)	Write an equation to represent this reaction.
		(ii)	Give the name of this process for making ethanol. (2 marks)
	(b)	Etha	anol can be used as a fuel in the internal combustion engine of a motor car. Write an equation for the complete combustion of ethanol.
		(ii)	Identify a pollutant produced when ethanol is burned in a limited supply of air.
		(iii)	Nitrogen monoxide, NO, is a pollutant gas produced by motor cars. Write an equation to represent a reaction occurring in the catalytic converter which decreases the amount of this pollutant.
			(3 marks)

The Periodic Table of the Elements

The atomic numbers and approximate relative atomic masses shown in the table are for use in the examination unless stated otherwise in an individual question.

			3		_ E
0	4.0 He Helium 2	20.2 Neon 10 39.9 Ar Argon	1	222.0 Rn Radon 86	175.0 Lutetium 71 (260) Lx Lawrendium 1103
=		19.0 F Fluorine 9 35.5 C Chlorine	79.9 Bromine 35 126.9 I odine 53	210.0 At Astatine Astatine 85	Yterbium Yb Yterbium 70 (259) No Nobelium 102
>		16.0 Oxygen 8 32.1 S S Sulphur	Selenium 34 127.6 Te Tellurium 52	210.0 Po Polonium 84	168.9 Tm Thulium 69 (258) Md Mendelevium 101
>		14.0 Nitrogen 7 7 31.0 Phosphorus 15.0	Arsenic 33 (28 Sharmony 4 Antimony 51 Sharmony 51 Shar	209.0 Bi Bismuth 83	167.3 Erbium 68 (257) Fm Fermium 100
<u>></u>		20.0 Carbon 6 S 28.1 Silicon 14	72.6	207.2 Pb Lead 82	162.5 164.9 Ho Dysprosium Holmium 66 67 252.1 (252) Californium Einsteinium 98
=		10.8 Boron 5 27.0 Aluminium 13			158.9 162.5 164.9 167.3 168.9 173.0 175.0 Tb Dy Ho Er Tm Yb Lu Terbium Dysprosium Holmium Erbium Thullium Ytterbium Lutetium 65 67 68 69 70 71 247.1 252.1 (252) (257) (258) (259) (260) Bk Cf Es Fm Mendelevium Nobelium Lr Berkelium 98 100 101 102 103
			65.4 Zn Zinc 30 112.4 Cd Cadmium 48	200.6 Hg Mercury 80	158.9 Tb Tcbium 65 247.1 Bk Berkelium 97
			63.5 Cu Copper 29 107.9 Ag Silver	197.0 Au Gold 79	7.3 Gd idolinium Idolinium 7.1 Cm
			58.7 Nickel 28 106.4 Pd Palladium	195.1 Pt Platinum 78	152.0 Eu Europium 63 243.1 Am Americium 95
			52.0 54.9 55.8 58.9 Cool Chromium Manganese Iron Cobalt 24 25 26 27 95.9 98.9 101.1 102.9 Moybdenum Technetium Ruthenium Rhodium 42 43 44 45	192.2 r ridium 77	Sm Samarium 62 239.1 Pu Plutonium 94
			55.8 Fe Iron 26 101.1 Ru Ruthenium 44	190.2 Os Osmium 76	144.9 150.4 152.0 15 Pm
		-6.9 Li Lithium	52.0 54.9 Mn Chromium Manganese 24 25 95.9 98.9 TC Molybdenum Technetium 42 43	186.2 Re Rhenium 75	140.9
			52.0 Cr Chromium 24 95.9 Mo Molybdenum 42	183.9 W W Tungsten 74	140.9 144.2 144.9 15
		relative atomic mass atomic number	50.9 Vanadium 23 92.9 Niobium 41	180.9 Ta Tantalur 73	140.1 Ce Cerium 58 232.0 Th Thorium 90
	Key	relative atomic atomic number	47.9 Ti Titanium 22 91.2 Zr Zirconium 40	178.5 Hf Hafnium 72	
			45.0 Scandium 21 Yttrium 39	138.9 Lanthanum 57 * 227 Ac Actinium 89 †	anides ides
=		9.0 Beryllium 4 24.3 Magnesium 12	40.1 Ca Calcium 20 37.6 Sr Strontium	137.3 Ba Barium 56 226.0 Ra Radium 88	* 58 – 71 Lanthanides † 90 – 103 Actinides
-	1.0 H Hydrogen	Ithium O O odium	assium	132.9 Csesium 55 Francium Francium 87	* 58 – 7. † 90 – 1(
	WW	WXTRE	MEPAPER 37 Rule Political St. 19 St.	S.NET www	v.theallpapers.com

140.1	140.1 140.9 144.2 144	144.2	و. د	150.4	150.4 152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
Ce	Ce Pr Nd F	Nd		Sm	Sm Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Cerium 58	Praseodymium Neodymium Pron 59 60 61	Neodymium 60	nethium	Samarium 62	Europium 63	Gadolinium Terbium 64 65	Terbium 65	Dysprosium 66	Holmium 57	Erbium 68	Thulium 69	Ytterbium 70	Lutetium 71
232.0	231.0	238.0	232.0 231.0 238.0 237.0 239.1 2 Th Pa U Np Pu	239.1	243.1	247.1	247.1 2	252.1	252)	(257)	(258)	(259)	(260)
Th	Pa	U		Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Thorium	Protactinium Uranium 91	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Salifornium	insteinium	Fermium	Mendelevium	Nobelium	Lawrencium
90		92	93	94	35	96	97	38	9	100	101	102	103

APW/0204/CHM3/W

Table 1 Proton n.m.r chemical shift data

Type of proton	δ/ppm
RCH ₃	0.7–1.2
R_2CH_2	1.2–1.4
R_3 CH	1.4–1.6
$RCOCH_3$	2.1–2.6
$ROCH_3$	3.1–3.9
$RCOOCH_3$	3.7–4.1
ROH	0.5-5.0

Table 2 Infra-red absorption data

Bond	Wavenumber/cm ⁻¹
С—Н	2850-3300
C—C	750–1100
C=C	1620–1680
C=O	1680–1750
С—О	1000-1300
O—H (alcohols)	3230–3550
O—H (acids)	2500–3000

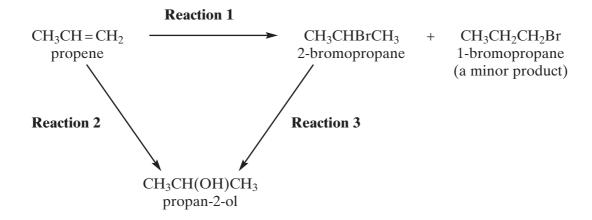
(c) Ethene can be formed by the dehydration of ethanol using concentrated sulphuric acid. Name and complete a mechanism for this reaction.

Name of mechanism

Mechanism

$$\begin{array}{ccc} H & H \\ H - C - C - H & \longrightarrow \\ HO: & H \\ H^+ & \end{array}$$

(5 marks)


(d) Epoxyethane is manufactured from ethene. Give a suitable catalyst for this manufacturing process. Write an equation for the reaction, clearly showing the structure of epoxyethane.

Catalyst

Equation

2 Consider the following reaction scheme.

(a) (i) Name the mechanism for **Reaction 1**.

(ii)	Explain why 1-bromopropane is only a minor product in Reaction 1 .
	(3 marks)

(b) Give a suitable reagent and state the essential conditions required for **Reaction 3**.

Reagent	 	•••••	•••••	•••••
Conditions				
				(2 marks)

(c) The reagent used for **Reaction 3** can also be used to convert 2-bromopropane into propene. State the different conditions needed for this reaction.

......(1 mark)

(d) Reaction 2 proceeds in two stages.

Stage 1
$$CH_3CH=CH_2 + H_2SO_4 \rightarrow CH_3CH(OSO_2OH)CH_3$$

$$Stage\ 2$$
 $CH_3CH(OSO_2OH)CH_3 + H_2O \rightarrow CH_3CH(OH)CH_3 + H_2SO_4$

- (i) Name the class of alcohols to which propan-2-ol belongs.
- (ii) Outline a mechanism for Stage 1 of **Reaction 2**, using concentrated sulphuric acid.

(iii) State the overall role of the sulphuric acid in **Reaction 2**.

(6 marks)

12

TURN OVER FOR THE NEXT QUESTION

Turn over

3	(a)	(i)	Give a suitable reagent and state the necessary conditions for the conversion of propan-2-ol into propanone. Name the type of reaction.
			Reagent
			Conditions
			Type of reaction
		(ii)	Propanone can be converted back into propan-2-ol. Give a suitable reagent and write an equation for this reaction. (Use [H] to represent the reagent in your equation.)
			Reagent
			Equation
			(5 marks)
			(e mans)
	(b)	Prop	anal is an isomer of propanone.
		(i)	Draw the structure of propanal.
		(ii)	A chemical test can be used to distinguish between separate samples of propanone and propanal. Give a suitable reagent for the test and describe what you would observe with propanone and with propanal.
			Test reagent
			Observation with propanone
			Observation with propanal
			(4 marks)

TURN OVER FOR THE NEXT QUESTION

4	(a)	The	fromomethane, CH ₃ Br, can be formed by a reaction between bromine and methane the mechanism for this reaction is similar to the mechanism for the chlorination conethane.					
		(i)	Name the mechanism for this reaction.					
		(ii)	Give the name of, and state an essential condition for, the first step in the mechanism for this reaction.					
			Name					
			Essential condition					
		(iii)	Write an equation for a termination step in the mechanism for this reaction which gives ethane as a product.					
		(iv)	Bromomethane can undergo further substitution. Write an overall equation for					
		(IV)	the reaction between bromomethane and bromine in which dibromomethane is formed.					
			(5 marks)					

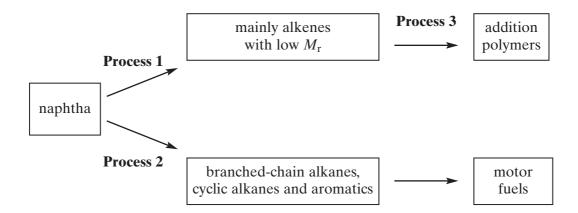
(b) Bromomethane reacts with the nucleophile ammonia according to the following equation.

$$CH_3Br + 2NH_3 \rightarrow CH_3NH_2 + NH_4Br$$

- (i) Explain what is meant by the term *nucleophile*.
- (iii) Outline a mechanism for this reaction.

Name the organic product of this reaction.

(6 marks)


TURN OVER FOR THE NEXT QUESTION

Turn over

SECTION B

Answer the question below in the space provided on pages 12 to 16 of this booklet.

5 Naphtha is one of the fractions obtained from crude oil and is a source of useful products.

- (a) Naphtha is separated from crude oil by the process of fractional distillation. Outline the essential features of fractional distillation and explain why separation is achieved by this process. (4 marks)
- (b) Give a name for **Process 1**. State **one** essential condition and name the type of reactive intermediate involved in this process. Write an equation to show how one molecule of an alkane $C_{13}H_{28}$ can be converted into two molecules of ethene, one molecule of propene and one molecule of an alkane. (5 marks)
- (c) **Process 2** produces branched-chain alkanes and cyclic alkanes from larger alkanes. Give a name for **Process 2** and name the type of reactive intermediate involved in this process. Draw **one** possible structure for each of the alkanes C_5H_{12} and C_6H_{12} which are produced in **Process 2**. Name the alkane C_5H_{12} which you have drawn. (5 marks)
- (d) Write an equation to illustrate the formation of an addition polymer from propene in **Process 3**. (1 mark)

END OF QUESTIONS

 	 •••••	•••••

 •••••
•••••
•••••
•••••
•••••
•••••

••••••
 •••••

•••••

Copyright © 2004 AQA and its licensors. All rights reserved.