Surname	rname			Other	Names				
Centre Nu	mber				Candidate Number				
Candidate	Signat	ure							·

For Examiner's Use

General Certificate of Education January 2008 Advanced Subsidiary Examination ASSESSMENT IN A QUALIFICATIONS ALLIANCE

CHEMISTRY CHM3/W Unit 3(a) Introduction to Organic Chemistry

Thursday 10 January 2008 9.00 am to 10.00 am

For this paper you must have

· a calculator.

Time allowed: 1 hour

Instructions

- Use blue or black ink or ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Answer the questions in Section A and Section B in the spaces provided.
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- The Periodic Table/Data Sheet is provided as an insert.

Information

- The maximum mark for this paper is 60.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- Write your answers to the question in Section B in continuous prose, where appropriate. You will be assessed on your ability to use an appropriate form and style of writing, to organise relevant information clearly and coherently, and to use specialist vocabulary, where appropriate.

Advice

- You are advised to spend about 45 minutes on **Section A** and about 15 minutes on **Section B**.
- The parts of Section B should be answered on separate pages as indicated.

For Examiner's Use				
Question	Mark	Question	Mark	
1				
2				
3				
4				
5				
6				
Total (Co	Total (Column 1)			
Total (Column 2) ->				
TOTAL				
Examiner's Initials				

SECTION A

Answer all questions in the spaces provided.

		and natural gas are mixtures of alkanes with sulphur-containing impurities. e saturated hydrocarbons.
(a)	(i)	Name the process that is used to separate petroleum into useful fractions.
		(1 mark)
	(ii)	State what is meant by the term petroleum fraction.
		(1 mark)
(b)	State	what is meant by the term <i>saturated</i> hydrocarbon.
		(1 mark)
(c)	Pollu	atants are formed when hydrocarbon fractions are burned in a limited supply of air.
	(i)	Write an equation for the incomplete combustion of decane ($C_{10}H_{22}$) to give carbon monoxide and water only.
		(1 mark)
	(ii)	Identify a solid pollutant which could form during the incomplete combustion of decane.
		(1 mark)
	(iii)	Identify the pollutant which would be formed from the sulphur-containing impurities in petroleum if they were burned.
		(1 mark)

(d)		n they are burned in air, the alcohols methanol and ethanol produce smaller ants of pollutants than petroleum fractions.
	(i)	Write an equation for the complete combustion of methanol, CH ₃ OH
		(1 mark)
	(ii)	It may be desirable to increase the use of ethanol as a fuel in the future. Give one reason for this, other than the production of smaller amounts of pollutants.
		(1 mark)

Turn over for the next question

		ethene propene but-1-ene		
		pent-1-ene		
(a)	One		of an homologous series is that it can be represented b	y a general
	(i)	Give the gene	ral formula for these alkenes.	
				(1 mark)
	(ii)	State two other	er characteristics of an homologous series.	(1 mark)
		Characteristic	21	
		Characteristic	2	
				(2 marks)
(b)	Give	the molecular	formula for the next member of this homologous series	es.
	•••••			(1 mark)
(c)	Drav	v the structure of	of the position isomer of pent-1-ene.	
				(1 mark)
(d)	Buta	-1,3-diene has t	he formula	
			$H_2C=CH-CH=CH_2$	
	(i)	State what is	meant by the term empirical formula.	
	(ii)	Give the empi	rical formula of buta-1,3-diene.	(1 mark)
				(1 mark)

2

(e)	(e) Alkenes are able to react with bromine even though bromine is a non-polar mo		le.
	(i)	Explain why non-polar bromine molecules are able to react with the double bonds in alkenes.	
			•••••
		(2 mc	
	(ii)	Name the type of mechanism involved in this reaction.	
		(1 m	 nark)
	(iii)	Draw the structure of the compound with $M_r = 373.6$, formed when buta-1,3-diene reacts with an excess of bromine.	

(1 mark)

11

Turn over for the next question

3 The naturally-occurring fragrances in rose oil contain unsaturated alcohols. Three of these alcohols are shown in the following table.

Geraniol	$H_{3}C$ $C=C$ $H_{3}C$ $C=C$ $CH_{2}OH$ $H_{3}C$ $C=C$ H
Nerol	$H_{3}C$ $C=C$ $H_{3}C$ $C=C$ $CH_{2}-CH_{2}$ $C=C$ $CH_{2}OH$
Citronellol	$H_{3}C$ $C=C$ $H_{3}C$ $CH-CH_{2}-CH_{2}OH$ $H_{3}C$

(a) Geraniol and nerol are stereoisomers of each other.

(i)

(ii)

Stat	e what is meant by the term <i>stereoisomers</i> .	
••••		
••••		
••••		
Stat	e the type of stereoisomerism shown by geraniol and nerol.	(2 marks)
		(1 mark)

- (b) Citronellol can be formed from either geraniol or nerol by the same type of chemical reaction.
 - (i) State the type of reaction.

(1 mark)

(ii) Give a reagent and a catalyst for this reaction.

Reagent

(2 marks)

- (c) State the class of alcohols to which citronellol belongs. (1 mark)
- (d) Citronellol can be converted into the aldehyde citronellal, which has the following structure.

$$H_{3}C$$
 $C = C$ H $H_{3}C$ $CH - CH_{2} - C$ H

State the type of reaction and a reagent or combination of reagents which could be used to convert citronellol into citronellal.

Type of reaction

Reagent or combination of reagents

(2 marks)

Turn over for the next question

4	Cata	lysts are used extensively in reactions.
	(a)	Write an equation for the reaction between nitrogen monoxide and carbon monoxide in a catalytic converter of a petrol-engined car. Identify a catalyst used in a catalytic converter.
		Equation
		Catalyst
	(b)	Epoxyethane is manufactured from ethene and oxygen. Draw the structure of epoxyethane and identify the catalyst used in this reaction.
		Structure
		Catalyst(2 marks)
	(c)	Write an equation for the catalytic cracking of dodecane ($C_{12}H_{26}$) to form cyclohexane and one other alkane. Identify the catalyst used in this reaction.
		Equation
		Catalyst(2 marks)
	(d)	Write an equation for the fermentation of glucose ($C_6H_{12}O_6$) and identify a catalyst for this process.
		Equation
		Catalyst
	(e)	Write an equation for the elimination of water from butan-1-ol showing the structures of the organic compounds. Identify a catalyst used in this reaction.
		Equation
		Catalyst
		(2 marks)

5	Bromomethane (CH ₃ Br) reacts with bromine by a free-radical substitution mechanism to
	form dibromomethane, CH ₂ Br ₂
	The reaction mechanism is similar to that for the reaction of chloring with methane

(a)	Write equations for the following steps in the mechanism for the reaction of bromine with CH_3Br to form CH_2Br_2
	Initiation step
	First propagation step
	Second propagation step
	(3 marks)
(b)	 The bromination of bromomethane will produce a mixture of products including dibromomethane, tribromomethane and tetrabromomethane. (i) Write an overall equation for the conversion of bromomethane into tetrabromomethane, CBr₄
	(1 mark)
	(ii) State how the reaction conditions would have to be adjusted to produce the highest possible yield of tetrabromomethane.
	(1 mark)
(c)	Complete and balance the following equation for the reaction of ammonia with bromomethane. Give the name of the organic product of this reaction.
	CH ₃ Br + + NH ₄ Br
	Name of product

SECTION B

Answer the question below in the spaces provided on pages 11 to 16 of this booklet. You should answer part (a) on page 11, part (b) on page 12, part (c) on page 13 and part (d) on page 14.

6 Consider the following scheme of reactions.

(a) Name compounds A, B and D.

(3 marks)

(b) Name and outline a mechanism for the conversion of \boldsymbol{A} into \boldsymbol{B} (Reaction 1).

(4 marks)

(c) Name and outline a mechanism for the conversion of $\bf B$ into $\bf C$ (Reaction 2).

(5 marks)

(d) Name and outline a mechanism for the conversion of ${\bf A}$ into ${\bf D}$ (Reaction 3).

(3 marks)

END OF QUESTIONS

Write your answer to Question 6(a) on this page.

Write your answer to Question 6(b) on this page.

Write your answer to Question 6(c) on this page.

Write your answer to Question 6(d) on this page.

•••••
•••••
 ••••••
 •••••

••••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
••••••
•••••
 •••••
 •••••
•••••
 •••••
•••••

Copyright © 2008 AQA and its licensors. All rights reserved.

CHEMISTRY CHM3/W Unit 3(a) Introduction to Organic Chemistry

Gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

Table 1 Proton n.m.r chemical shift data

Type of proton	δ/ppm
RCH_3	0.7–1.2
R_2CH_2	1.2–1.4
R_3CH	1.4–1.6
$RCOCH_3$	2.1–2.6
$ROCH_3$	3.1–3.9
$RCOOCH_3$	3.7–4.1
ROH	0.5-5.0

Table 2 Infra-red absorption data

Bond	Wavenumber/cm ⁻¹
С—Н	2850-3300
С—С	750–1100
C=C	1620–1680
C=O	1680–1750
C—O	1000-1300
O—H (alcohols)	3230–3550
O—H (acids)	2500–3000

The Periodic Table of the Elements

■ The atomic numbers and approximate relative atomic masses shown in the table are for use in the examination unless stated otherwise in an individual question.

	=											≡	≥	>	5	=	0
		_	Key														4.0 He Helium 2
ю. _п 4	9.0 Be Beryllium 4	_ (0	relative atomic atomic atomic number	relative atomic mass atomic number		6.9 Li Lithium						10.8 B Boron 5	12.0 C Carbon 6	14.0 N Nitrogen 7	16.0 O Oxygen 8	19.0 F Fluorine 9	20.2 Ne Neon
	24.3 Mg Magnesium 12											27.0 AI Aluminium 13	28.1 Si Silicon	31.0 P Phosphorus 15	32.1 S Sulphur 16	35.5 Cl Chlorine	39.9 Ar Argon 18
<u> </u>		Scool			52.0 Ç	54.9 K	55.8 Fe			1	65.4 Zn	69.7 Ga	72.6 Ge	74.9 AS	1	79.9 Br	83.8 Kr
	_	_	_	vanadium 23	Chromium 24	Manganese 25	26 2	Cobalt 27	Nickei	Copper 29	30 Zinc	Gallium 31	Germanium 32	Arsenic 33	Selenium 34	Bromine 35	Arypton 36
	87.6 Sr	6.88 ∀	91.2 Zr	95.9 Nb	6 .96	98.9 Tc	101.1 Ru	102.9 Rh	6.4 Pd	107.9 Ag	112.4 Cd	114.8 In	118.7 Sn	121.8 Sb	127.6 Te	126.9 I	131.3 Xe
یب رن	<u> </u>	Yttrium 39	⊏	Niobiun 41	Molybdenum 42	Technetium 43	Ruthenium 44	Rhodium 45	alladium	Silver 47	Cadmium 48	Indium 49		Antimony 51	Tellurium 52	lodine 53	Xenon 54
	137.3 1 Ba	138.9 La	178.5 Hf	180.9 Ta	183.9 186.2 190.2 192.2 19 W Re Os Ir	186.2 Re	190.2 Os	192.2 Ir	5.1 P		200.6 Hg	I .	207.2 Pb	209.0 Bi	210.0 Po	210.0 At	222.0 Rn
ب	Barium L 56	يد∋	Hafnium 72	Tantalum 73	Tungsten 74	Rhenium 75	Osmium 76	Iridium 77	latinum			Thallium 81		Bismuth 83	_	Astatine 85	Radon 86
	223.0 226.0 227	227 Ac Actinium 89 †															
					140.9		144.9	150.4	52.0		158.9	162.5	164.9	67.3	168.9		175.0
	Lanthar	ides	-	ΔĘ	in	Neodymium 60	Pm Sm In Promethium Samarium 61 62 62	Samarium	Eu Gd Europium Gadolinium 63	Gd Idolinium	Tb Terbium 65	Dysprosium Holmium 66 67 6	Holmium 67	Erbium		Yb Ytterbium 70	Lu Lutetium 71
\sim	wees. Wees.	es		232.0 Th Thorium 90	231.0 238.0 Da U Uranium 91	238.0 U Uranium 19292	237.0 Neptunium 93	Pu Pu Plutonium 34	237.0 239.1 243.1 24 Np Pu Am Americium Plutonium Americium (93 94 95 96	7.1 Cm Surium	247.1 252.1 (252) (257) (258) (259) (260) Bk Cf Es Fm Md No Lr Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium 97 98 99 100 101 102 103	252.1 Cf Californium 98	(252) Es Einsteinium 99	(257) Fm Fermium 100	(258) Md Mendelevium 101	(259)	(260) Lr Lawrencium 103

g		<u>, c</u>	D	764.9 4 .9	او/ ع آ	168.9 Tm	73.0 175.0 Yb Lu
3adoliniu 34		m Terbium 65	Dysprosium 66	Holmium 67	Erbium 68	Thuliun 69	Ytterbium Lutetium 70 71
247.1 Cm	243.1 247.1 Cm	247.1 BK	252.1 Cf	(252) Es	(257) Fm	(258) Md	(259) (260) No Lr
Curium 36	_	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevii 101	Nobelium Lawrencium 102 103